论文标题

合金纳米结构的模式和空间分辨的热传输

Mode- and Space- Resolved Thermal Transport of Alloy Nanostructures

论文作者

Hosseini, S. Aria, Khanniche, Sarah, Snyder, G. Jeffrey, Huberman, Samuel, Greaney, P. Alex, Romano, Giuseppe

论文摘要

纳米结构的半导体合金获得了具有广泛无均值路径(MFP)的声子的散射,获得了超低的热导率。在这些材料中,长MFP声子散布在纳米级边界处,而短MFP高频声子则受到合金引入的无序点缺陷的阻碍。尽管这种趋势已通过简化的分析和数值方法验证,但AB-Initio空间分辨方法仍然难以捉摸。为了填补这一空白,我们通过使用有限体积方法来求解声子的模式分辨玻尔兹曼传输方程来计算多孔合金的热导率降低。我们分析了不同的合金,长度尺度,浓度和温度,在整个构型空间中获得了非常大的导热率降低。例如,$ _ {0.2} $的Al $ _ {0.8} $的Al $ _ {0.8} $的降低约为97%,如25%的孔隙率。此外,我们采用这些模拟来验证我们最近引入的“弹道校正模型”(BCM),该方法使用散装合金的特征MFP估算有效的导热率和材料的长度尺度。然后,BCM用于在设计基于合金的纳米结构时提供指导原则。值得注意的是,它阐明了与多孔SI或GE相比,诸如Si $ _ {X} $ ge $ _ {1-x} $之类的多孔合金如何获得更大的导热率,同时也解释了为什么我们不应该期望在$ _ {x}等合金中类似的行为,例如$ _ {x} $ in $ _ {1-x} $。通过考虑到不同尺度散射的协同作用,我们为设计具有超低热导率的材料设计提供了途径。

Nanostructured semiconducting alloys obtain ultra-low thermal conductivity as a result of the scattering of phonons with a wide range of mean-free-paths (MFPs). In these materials, long-MFP phonons are scattered at the nanoscale boundaries whereas short-MFP high-frequency phonons are impeded by disordered point defects introduced by alloying. While this trend has been validated by simplified analytical and numerical methods, an ab-initio space-resolved approach remains elusive. To fill this gap, we calculate the thermal conductivity reduction in porous alloys by solving the mode-resolved Boltzmann transport equation for phonons using the finite-volume approach. We analyze different alloys, length-scales, concentrations, and temperatures, obtaining a very large reduction in the thermal conductivity over the entire configuration space. For example, a ~97% reduction is found for Al$_{0.8}$In$_{0.2}$As with 25% porosity. Furthermore, we employ these simulations to validate our recently introduced "Ballistic Correction Model" (BCM), an approach that estimates the effective thermal conductivity using the characteristic MFP of the bulk alloy and the length-scale of the material. The BCM is then used to provide guiding principles in designing alloy-based nanostructures. Notably, it elucidates how porous alloys such as Si$_{x}$Ge$_{1-x}$ obtain larger thermal conductivity reduction compared to porous Si or Ge, while also explaining why we should not expect similar behavior in alloys such as Al$_{x}$In$_{1-x}$As. By taking into account the synergy from scattering at different scales, we provide a route for the design of materials with ultra-low thermal conductivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源