论文标题
混合与匹配:使用能量语言模型的无学习可控文本生成
Mix and Match: Learning-free Controllable Text Generation using Energy Language Models
论文作者
论文摘要
对受控文本生成的最新工作需要基于属性的基本语言模型(LM)的微调,或者限制了属性歧视器的参数化与基本自动回归LM兼容。在这项工作中,我们提出了混合和匹配LM,这是一种基于全球分数的可控文本生成的替代方案,结合了任意预训练的黑盒模型,用于在生成的文本中实现所需的属性,而无需涉及有关黑盒模型的任何微调或结构假设。我们将可控生成的任务解释为从基于能量的模型中绘制样本,该模型的能量值是来自黑框模型的分数组合,这些分别对流利度,控制属性和对任何条件环境的忠诚分别负责。我们使用大都市杂酒采样方案,使用双向上下文和全局属性特征从该基于能量的模型中进行采样。我们通过胜过最近提出的方法,涉及对模型形式的额外培训,微调或限制性假设来验证方法对各种受控生成和样式文本修订任务的有效性。
Recent work on controlled text generation has either required attribute-based fine-tuning of the base language model (LM), or has restricted the parameterization of the attribute discriminator to be compatible with the base autoregressive LM. In this work, we propose Mix and Match LM, a global score-based alternative for controllable text generation that combines arbitrary pre-trained black-box models for achieving the desired attributes in the generated text without involving any fine-tuning or structural assumptions about the black-box models. We interpret the task of controllable generation as drawing samples from an energy-based model whose energy values are a linear combination of scores from black-box models that are separately responsible for fluency, the control attribute, and faithfulness to any conditioning context. We use a Metropolis-Hastings sampling scheme to sample from this energy-based model using bidirectional context and global attribute features. We validate the effectiveness of our approach on various controlled generation and style-based text revision tasks by outperforming recently proposed methods that involve extra training, fine-tuning, or restrictive assumptions over the form of models.