论文标题
在交互式模拟中可视化量子力学 - 量子蝇绑的虚拟实验室
Visualizing quantum mechanics in an interactive simulation -- Virtual Lab by Quantum Flytrap
论文作者
论文摘要
量子飞行器的虚拟实验室探索了互动和直观地表示量子现象的新颖方法。这是一个无代码在线实验室,具有对光学表的实时模拟,最多支持三个纠缠的光子。用户可以将典型的光学元素(例如横梁拆分器,极化器,法拉第旋转器和检测器)放置使用拖放图形接口。虚拟实验室以两种模式运行。沙盒模式允许用户组成任意设置。量子游戏可作为虚拟实验室功能的介绍,该功能可用于未接触量子力学的用户。 我们介绍了可视化纠缠量子状态并显示纠缠措施的新颖方法,包括KET符号的交互式可视化和量子运算符的热图样可视化。这些量子可视化可以应用于任何离散的量子系统,包括带有Qubits和旋转链的量子电路。这些工具可作为开源打字条软件包 - 量子张量和braketvue。 Virtual Lab makes it possible to explore the nature of quantum physics (state evolution, entanglement, and measurement), to simulate quantum computing (e.g. the Deutsch-Jozsa algorithm), to use quantum cryptography (e.g. the Ekert protocol), to explore counterintuitive quantum phenomena (e.g. quantum teleportation & the Bell inequality violation), and to recreate historical experiments (例如,米歇尔森 - 莫利干涉仪)。 虚拟实验室可在以下网址提供:https://lab.quantumflytrap.com。
Virtual Lab by Quantum Flytrap explores novel ways to represent quantum phenomena interactively and intuitively. It is a no-code online laboratory with a real-time simulation of an optical table, supporting up to three entangled photons. Users can place typical optical elements (such as beam splitters, polarizers, Faraday rotators, and detectors) with a drag-and-drop graphical interface. Virtual Lab operates in two modes. The sandbox mode allows users to compose arbitrary setups. Quantum Game serves as an introduction to Virtual Lab features, approachable for users with no prior exposure to quantum mechanics. We introduce novel ways of visualizing entangled quantum states and displaying entanglement measures, including interactive visualizations of the ket notation and a heatmap-like visualization of quantum operators. These quantum visualizations can be applied to any discrete quantum system, including quantum circuits with qubits and spin chains. These tools are available as open-source TypeScript packages - Quantum Tensor and BraKetVue. Virtual Lab makes it possible to explore the nature of quantum physics (state evolution, entanglement, and measurement), to simulate quantum computing (e.g. the Deutsch-Jozsa algorithm), to use quantum cryptography (e.g. the Ekert protocol), to explore counterintuitive quantum phenomena (e.g. quantum teleportation & the Bell inequality violation), and to recreate historical experiments (e.g. the Michelson-Morley interferometer). Virtual Lab is available at: https://lab.quantumflytrap.com.