论文标题

NPBG ++:基于神经点的图形加速

NPBG++: Accelerating Neural Point-Based Graphics

论文作者

Rakhimov, Ruslan, Ardelean, Andrei-Timotei, Lempitsky, Victor, Burnaev, Evgeny

论文摘要

我们为新型视图合成(NVS)任务提供了一个新的系统(NPBG ++),该任务以低场景拟合时间实现了很高的现实主义。我们的方法有效地利用了多视图观测值和静态场景的点云来预测每个点的神经描述符,从而以几种重要方式改善了基于神经点的图形的管道。通过单个通过源图像来预测描述符,我们提高了每场场景优化的要求,同时还使神经描述符视图依赖性,并且更适合具有强烈非lambertian效应的场景。在我们的比较中,所提出的系统在拟合和渲染时的效果优于先前的NVS方法,同时产生相似质量的图像。

We present a new system (NPBG++) for the novel view synthesis (NVS) task that achieves high rendering realism with low scene fitting time. Our method efficiently leverages the multiview observations and the point cloud of a static scene to predict a neural descriptor for each point, improving upon the pipeline of Neural Point-Based Graphics in several important ways. By predicting the descriptors with a single pass through the source images, we lift the requirement of per-scene optimization while also making the neural descriptors view-dependent and more suitable for scenes with strong non-Lambertian effects. In our comparisons, the proposed system outperforms previous NVS approaches in terms of fitting and rendering runtimes while producing images of similar quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源