论文标题

最大$a_α$ -spectral半径为$ t $连接的图形,带有有限匹配号码

The maximum $A_α$-spectral radius of $t$-connected graphs with bounded matching number

论文作者

Liu, Chang, Yan, Zimo, Li, Jianping

论文摘要

令$ g $为具有邻接矩阵$ a(g)$的图表,让$ d(g)$是$ g $的对角矩阵。在2017年,Nikiforov将$ g $的$a_α$ -matrix定义为\ begin {qore*}a_α(g)=αg)+(1-α)a(g),\ end end {qore*} d,其中$α\ in [0,1] in [0,1] $是一个任意的真实实际数字。 $a_α(g)$的最大特征值称为$a_α$ spectral半径为$ g $。令$ n $,$ t $,$ k $为正整数,满足$ t \ geq1 $,$ k \ geq2 $,$ n \ geq k+2 $和$ n \ equiv k $(mod $ 2 $)。在本文中,对于$α\在[0,\ frac {1} {2}] $中,我们确定最大$ t $ contement the $ n $ contecters在$ n $ contectics中的最大值$a_α$ - 光度半径,其中最多属于$ n $ n $ contectics $ \ frac {n-k} $。这概括了O(2021)和张(2022)的一些结果。

Let $G$ be a graph with adjacency matrix $A(G)$ and let $D(G)$ be a diagonal matrix of the degrees of $G$. In 2017, Nikiforov defined the $A_α$-matrix of $G$ as \begin{equation*} A_α(G)=αG)+(1-α)A(G), \end{equation*}d where $α\in[0,1]$ is an arbitrary real number. The largest eigenvalue of $A_α(G)$ is called the $A_α$-spectral radius of $G$. Let $n$, $t$, $k$ be positive integers, satisfying $t\geq1$, $k\geq2$, $n\geq k+2$, and $n\equiv k$ (mod $2$). In this paper, for $α\in[0,\frac{1}{2}]$, we determine the extremal graphs with the maximum $A_α$-spectral radius among all $t$-connected graphs on $n$ vertices with matching number $\frac{n-k}{2}$ at most. This generalizes some results of O (2021) and Zhang (2022).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源