论文标题

跨性别系统中的家庭敏感性破裂

Broken family sensitivity in transitive systems

论文作者

Li, Jian, Yang, Yini

论文摘要

令$(x,t)$为拓扑动力系统,$ n \ geq 2 $和$ \ mathcal {f} $是$ \ mathbb {z} _+$的子集的Furstenberg家族。 $(x,t)$称为损坏$ \ MATHCAL {f} $ - $ n $ sentive,如果存在$δ> 0 $和$ f \ in \ Mathcal {f} $,以至于每个opene(non-oppent opent opent opent opent opent)subset $ u $ $ x $ of $ x $ of $ x $,并且每个$ l \ in \ inthbb in \ mathbb { $ x_1^l,x_2^l,\ dotsc,x_n^l \ in u $和$ m_l \ in \ mathbb {z} _+ $满足$ d(t^k x_i^l,t^k x_i^l,t^k x_j^l)>Δ我们调查了所有分段辛迪克子集的家庭($ \ Mathcal {f} _ {ps} $)的破碎$ \ Mathcal {f} $ - $ n $ - sensitivity,这是所有积极的上层Banach密度子集的家族($ \ Mathcal {f} _ {f} _ {pubd} $) ($ \ mathcal {f} _ {inf} $)。我们表明,传递系统$(x,t)$被打破$ \ nathcal {f} $ - $ n $ - 对$ \ Mathcal {f} = \ Mathcal {f} _ {f} _ {ps} \ \ \ \ \ \ \ \ \ \\ text {or} or} \ \ \ \ \ \ \ \ \ \ nisive in Is Insive in Is Incielist if-ifist if-ifist if-ifist if-ifist if-ifist $(x^n,t^{(n)})$的$ \ MATHCAL {F} $ - 循环点; $ \ nathcal {f} _ {inf} $ - $ n $ - 敏感时,只有存在必需的$ n $ n $ sentive tuple $(x_1,x_1,x_2,\ dotsc,x_n)$ n} d(t^kx_i,t^kx_j)> 0 $。我们还通过分析其最大等效因素的因子图来获得它们的特定特性。此外,我们展示了区分不同种类破碎的家庭敏感性的例子。

Let $(X,T)$ be a topological dynamical system, $n\geq 2$ and $\mathcal{F}$ be a Furstenberg family of subsets of $\mathbb{Z}_+$. $(X,T)$ is called broken $\mathcal{F}$-$n$-sensitive if there exist $δ>0$ and $F\in\mathcal{F}$ such that for every opene (non-empty open) subset $U$ of $X$ and every $l\in\mathbb{N}$, there exist $x_1^l,x_2^l,\dotsc,x_n^l\in U$ and $m_l\in \mathbb{Z}_+$ satisfying $d(T^k x_i^l, T^k x_j^l)> δ,\ \forall 1\leq i<j\leq n, k\in m_l+ F\cap[1,l]$. We investigate broken $\mathcal{F}$-$n$-sensitivity for the family of all piecewise syndetic subsets ($\mathcal{F}_{ps}$), the family of all positive upper Banach density subsets ($\mathcal{F}_{pubd}$) and the family of all infinite subsets ($\mathcal{F}_{inf}$). We show that a transitive system $(X,T)$ is broken $\mathcal{F}$-$n$-sensitive for $\mathcal{F}=\mathcal{F}_{ps}\ \text{or}\ \mathcal{F}_{pubd}$ if and only if there exists an essential $n$-sensitive tuple which is an $\mathcal{F}$-recurrent point of $(X^n, T^{(n)})$; is broken $\mathcal{F}_{inf}$-$n$-sensitive if and only if there exists an essential $n$-sensitive tuple $(x_1,x_2,\dotsc,x_n)$ such that $\limsup_{k\to\infty}\min_{1\leq i<j\leq n}d(T^kx_i,T^kx_j)>0$. We also obtain specific properties for them by analyzing the factor maps to their maximal equicontinuous factors. Furthermore, we show examples to distinguish different kinds of broken family sensitivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源