论文标题

加权部门的车辆路线问题量子退火

Quantum Annealing for Vehicle Routing Problem with weighted Segment

论文作者

Tambunan, Toufan D., Suksmono, Andriyan B., Edward, Ian J. M., Mulyawan, Rahmat

论文摘要

量子退火技术旨在解决计算优化和采样问题。 QPU(量子处理单元)(例如D-Wave系统)使用QUBO(二次无约束的二进制优化)公式来定义量子退火的模型优化问题。该机器使用量子效应来比古典计算机更好地计算时间。我们提出了一个可以在QUBO模型中作为组合问题提出的车辆路由问题,该问题使可能的路线解决方案呈指数增加。该解决方案旨在优化车辆到达目的地的旅程。该研究提出了一种QUBO公式,以解决某些道路上的交通拥堵问题。通过基于道路段的加权来优化替代道路车辆的流量的分布来选择所得的路线。约束作为道路密度水平的条件。道路重量参数会影响每种道路选择的成本功能。 D-Wave量子退火器上的模拟显示了几辆车辆路线部署的最佳结果。因此,每辆车都可以通过不同的道路选择并准确减少道路拥堵。该解决方案提供了一个机会,可以为道路拥堵的更复杂的车辆路由问题开发QUBO建模。

Quantum annealing technologies aim to solve computational optimization and sampling problems. QPU (Quantum Processing Unit) machines such as the D-Wave system use the QUBO (Quadratic Unconstrained Binary Optimization) formula to define model optimization problems for quantum annealing. This machine uses quantum effects to speed up computing time better than classical computers. We propose a vehicle routing problem that can be formulated in the QUBO model as a combinatorial problem, which gives the possible route solutions increases exponentially. The solution aims to optimize the vehicle's journey to reach a destination. The study presents a QUBO formulation to solve traffic congestion problems on certain roads. The resulting route selection by optimizing the distribution of the flow of alternative road vehicles based on the weighting of road segments. Constraints formulated as a condition for the level of road density. The road weight parameter influences the cost function for each road choice. The simulations on the D-Wave quantum annealer show optimal results on the route deployment of several vehicles. So that each vehicle will be able to go through different road options and reduce road congestion accurately. This solution provides an opportunity to develop QUBO modeling for more complex vehicle routing problems for road congestion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源