论文标题
用于计算量子熵和距离的新量子算法
New Quantum Algorithms for Computing Quantum Entropies and Distances
论文作者
论文摘要
我们提出了一系列用于计算各种量子熵和距离的量子算法,包括von Neumann熵,量子Rényi熵,痕量距离和保真度。在低级情况下,所提出的算法显着优于先前最佳(甚至量子)的算法,其中一些算法实现了指数加速。特别是,对于$ n $二维的等级$ r $的量子状态,我们提出的用于计算von Neumann熵的量子算法,添加性错误$ \ varepsilon $内的痕迹距离和保真度具有$ \ tilde o(r/\ varepsilon^2)$,$ \ tilde $($ \ tilde)的时间复杂性和$ \ tilde o(r^{6.5}/\ varepsilon^{7.5})$。相比之下,von neumann熵和痕量距离的先前量子算法通常具有时间复杂性$ω(n)$,而先前的Fidelity先前最佳算法具有时间复杂性$ \ tilde o(r^{12.5}/\ varepsilon^{13.5})$。 我们的量子算法的关键思想是将块编码从以前的工作中的单一操作员扩展到量子状态(即密度运算符)。通过开发几种方便的技术来操纵量子状态并从中提取信息,可以实现它。我们技术比现有方法的优点是,不需要对密度运算符的限制;相比之下,以前的方法通常需要在密度运算符的最小非零特征值上进行下限。
We propose a series of quantum algorithms for computing a wide range of quantum entropies and distances, including the von Neumann entropy, quantum Rényi entropy, trace distance, and fidelity. The proposed algorithms significantly outperform the prior best (and even quantum) ones in the low-rank case, some of which achieve exponential speedups. In particular, for $N$-dimensional quantum states of rank $r$, our proposed quantum algorithms for computing the von Neumann entropy, trace distance and fidelity within additive error $\varepsilon$ have time complexity of $\tilde O(r/\varepsilon^2)$, $\tilde O(r^5/\varepsilon^6)$ and $\tilde O(r^{6.5}/\varepsilon^{7.5})$, respectively. By contrast, prior quantum algorithms for the von Neumann entropy and trace distance usually have time complexity $Ω(N)$, and the prior best one for fidelity has time complexity $\tilde O(r^{12.5}/\varepsilon^{13.5})$. The key idea of our quantum algorithms is to extend block-encoding from unitary operators in previous work to quantum states (i.e., density operators). It is realized by developing several convenient techniques to manipulate quantum states and extract information from them. The advantage of our techniques over the existing methods is that no restrictions on density operators are required; in sharp contrast, the previous methods usually require a lower bound on the minimal non-zero eigenvalue of density operators.