论文标题

曲线和结的三重相关

A triple coproduct of curves and knots

论文作者

Ito, Noboru, Komatsuzaki, Takeshi

论文摘要

我们建议将三重副品$δ$分解为将表面上的一个组分曲线分解为三组分曲线。结合三个组件曲线上的相交数字$ν$,$Δ$在表面上提供了一个组分曲线的稳定等效性。这项研究是由米尔诺(Milnor)的三重链接数与仿射指数多项式之间的关系的动机。

We suggest a triple coproduct $Δ$ which decomposes pointed one-component curves on surfaces into three-component curves. Combined with intersection numbers $ν$ on three component curves, $Δ$ gives a stable equivalence invariant of one-component curves on surfaces. This study is motivated by relationship between the Milnor's triple linking number and the affine index polynomial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源