论文标题
LQOCO:学习优化存储系统中的高速缓存能力超载
LQoCo: Learning to Optimize Cache Capacity Overloading in Storage Systems
论文作者
论文摘要
缓存在存储系统中保持高稳定的性能(即高吞吐量,低尾部潜伏期和吞吐量抖动),起着重要作用。现有的基于规则的缓存管理方法,再加上工程师的手动配置,无法满足随时间变化的工作负载和复杂的存储系统的不断增长的要求,从而导致频繁的缓存过载。在本文中,我们首次提出了一种基于轻量学习的缓存带宽控制技术,称为\ lqoco,该技术可以自适应地控制高速缓存带宽,从而有效防止存储系统中的高速缓存过载。在实际系统上进行了各种工作量的大量实验表明,LQoco具有强大的适应性和快速学习能力,可以适应各种工作量以有效控制缓存带宽,从而显着改善存储性能(例如,将吞吐量提高10 \%-20 \%,并减少了两种透过的跨度抛弃量,并将两种延迟和尾部延迟与2x-6x-6x-6X-6X-15X-6X x缩短了2x-6x-15x-15x X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X x x x x x少。 方法)。
Cache plays an important role to maintain high and stable performance (i.e. high throughput, low tail latency and throughput jitter) in storage systems. Existing rule-based cache management methods, coupled with engineers' manual configurations, cannot meet ever-growing requirements of both time-varying workloads and complex storage systems, leading to frequent cache overloading. In this paper, we for the first time propose a light-weight learning-based cache bandwidth control technique, called \LQoCo which can adaptively control the cache bandwidth so as to effectively prevent cache overloading in storage systems. Extensive experiments with various workloads on real systems show that LQoCo, with its strong adaptability and fast learning ability, can adapt to various workloads to effectively control cache bandwidth, thereby significantly improving the storage performance (e.g. increasing the throughput by 10\%-20\% and reducing the throughput jitter and tail latency by 2X-6X and 1.5X-4X, respectively, compared with two representative rule-based methods).