论文标题

具有物理和几何参数的冠状动脉搭桥术的患者特异性血液动力学的数据驱动的减少订单模型

Data-driven reduced order modelling for patient-specific hemodynamics of coronary artery bypass grafts with physical and geometrical parameters

论文作者

Siena, Pierfrancesco, Girfoglio, Michele, Ballarin, Francesco, Rozza, Gianluigi

论文摘要

在这项工作中,提出了基于机器学习的减少订单模型(ROM),以研究冠状动脉旁路移植物(CABG)的患者特异性配置中血液动力学的研究。当发生左主冠状动脉(LMCA)的狭窄时,计算结构域被称为冠状动脉的左分支。该方法通过适当的正交分解(POD)算法从高保真溶液的集合中提取了缩小的基础空间,并采用人工神经网络(ANN)来计算模态系数。完整的模型(FOM)由使用有限体积(FV)技术离散的不可压缩的Navier-Stokes方程表示。考虑了物理和几何参数化,前者与入口流速有关,后者与狭窄的严重程度有关。关于以前的作品,重点是开发冠状动脉疾病的ROM框架,我们的研究的新颖性包括在患者特异性构型中使用FV方法,使用数据驱动的ROM技术和基于及时形式形式错误(FFD)技术的网格变形策略的使用。我们的ROM方法的性能是根据完整订单和减少订单解决方案以及在线阶段实现的加速度之间的误差来分析的。

In this work the development of a machine learning-based Reduced Order Model (ROM) for the investigation of hemodynamics in a patient-specific configuration of Coronary Artery Bypass Graft (CABG) is proposed. The computational domain is referred to left branches of coronary arteries when a stenosis of the Left Main Coronary Artery (LMCA) occurs. The method extracts a reduced basis space from a collection of high-fidelity solutions via a Proper Orthogonal Decomposition (POD) algorithm and employs Artificial Neural Networks (ANNs) for the computation of the modal coefficients. The Full Order Model (FOM) is represented by the incompressible Navier-Stokes equations discretized using a Finite Volume (FV) technique. Both physical and geometrical parametrization are taken into account, the former one related to the inlet flow rate and the latter one related to the stenosis severity. With respect to the previous works focused on the development of a ROM framework for the evaluation of coronary artery disease, the novelties of our study include the use of the FV method in a patient-specific configuration, the use of a data-driven ROM technique and the mesh deformation strategy based on a Free Form Deformation (FFD) technique. The performance of our ROM approach is analyzed in terms of the error between full order and reduced order solutions as well as the speedup achieved at the online stage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源