论文标题
人类运动的变化长度的隐性神经表示
Implicit Neural Representations for Variable Length Human Motion Generation
论文作者
论文摘要
我们提出了一种使用变异隐式神经表示(INR)的动作条件人类运动产生方法。变分形式主义可以使INRS的动作条件分布,从中可以轻松地采样表示形式以产生新的人类运动序列。我们的方法通过构造提供可变的长度序列生成,因为INR的一部分已针对具有时间嵌入的整个任意长度进行了优化。相反,以前的作品报告了建模可变长度序列的困难。我们证实,使用变压器解码器的方法优于HumanAct12,NTU-RGBD和UESTC数据集的所有相关方法,从现实主义和生成动作的多样性角度来看。令人惊讶的是,即使我们使用MLP解码器的方法也始终优于最先进的基于变压器的自动编码器。特别是,我们表明,在现实主义和多样性方面,我们方法生成的可变长度运动比最先进方法产生的固定长度运动更好。 https://github.com/pacerv/impliticmotion上的代码。
We propose an action-conditional human motion generation method using variational implicit neural representations (INR). The variational formalism enables action-conditional distributions of INRs, from which one can easily sample representations to generate novel human motion sequences. Our method offers variable-length sequence generation by construction because a part of INR is optimized for a whole sequence of arbitrary length with temporal embeddings. In contrast, previous works reported difficulties with modeling variable-length sequences. We confirm that our method with a Transformer decoder outperforms all relevant methods on HumanAct12, NTU-RGBD, and UESTC datasets in terms of realism and diversity of generated motions. Surprisingly, even our method with an MLP decoder consistently outperforms the state-of-the-art Transformer-based auto-encoder. In particular, we show that variable-length motions generated by our method are better than fixed-length motions generated by the state-of-the-art method in terms of realism and diversity. Code at https://github.com/PACerv/ImplicitMotion.