论文标题

微观结构的数字指纹

Digital Fingerprinting of Microstructures

论文作者

White, Michael D., Tarakanov, Alexander, Race, Christopher P., Withers, Philip J., Law, Kody J. H.

论文摘要

寻找有效的指纹手段微结构信息是迈向以数据为中心的机器学习方法的关键一步。系统地开发了一个统计框架,用于压缩图像群体的表征,其中包括一些经典的计算机视觉方法作为特殊情况。重点是材料微观结构。最终的目的是在各种高通量设计/制造/测试方案的背景下快速地指纹样品图像。这包括但不限于量化质量控制的微观结构之间的差异,对微观结构进行分类,从图像数据中预测材料属性,并确定具有特定特性的新材料的潜在处理途径。在这里,我们考虑了微观结构分类,并在一系列相关的机器学习任务中使用了所得功能,即受监督,半监督和无监督的学习。 该方法应用于两个不同的数据集,以说明各个方面,并根据发现提出一些建议。特别是,在ImageNet数据集上审议的卷积神经网络(CNN)利用转移学习的方法通常显示出优于其他方法。此外,这些基于CNN的指纹降低的维度降低被证明对所考虑的有监督学习方法的分类准确性具有可忽略的影响。在有一个大型数据集的情况下,只有少数标有基于图的标签的图像传播到未标记数据的情况下,与丢弃未标记的数据和执行监督学习相比有利。特别是,在低标签速率下,泊松学习的标签传播表现为非常有效。

Finding efficient means of fingerprinting microstructural information is a critical step towards harnessing data-centric machine learning approaches. A statistical framework is systematically developed for compressed characterisation of a population of images, which includes some classical computer vision methods as special cases. The focus is on materials microstructure. The ultimate purpose is to rapidly fingerprint sample images in the context of various high-throughput design/make/test scenarios. This includes, but is not limited to, quantification of the disparity between microstructures for quality control, classifying microstructures, predicting materials properties from image data and identifying potential processing routes to engineer new materials with specific properties. Here, we consider microstructure classification and utilise the resulting features over a range of related machine learning tasks, namely supervised, semi-supervised, and unsupervised learning. The approach is applied to two distinct datasets to illustrate various aspects and some recommendations are made based on the findings. In particular, methods that leverage transfer learning with convolutional neural networks (CNNs), pretrained on the ImageNet dataset, are generally shown to outperform other methods. Additionally, dimensionality reduction of these CNN-based fingerprints is shown to have negligible impact on classification accuracy for the supervised learning approaches considered. In situations where there is a large dataset with only a handful of images labelled, graph-based label propagation to unlabelled data is shown to be favourable over discarding unlabelled data and performing supervised learning. In particular, label propagation by Poisson learning is shown to be highly effective at low label rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源