论文标题

JAX-FLUID:可压缩两相流的完全差异的高阶计算流体动力学求解器

JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows

论文作者

Bezgin, Deniz A., Buhendwa, Aaron B., Adams, Nikolaus A.

论文摘要

物理系统受部分微分方程(PDE)的约束。 Navier-Stokes方程描述了流体流,并代表具有复杂时空相互作用的非线性物理系统。流体流在性质和工程应用中无处不在,其准确的模拟对于提供对这些过程的见解至关重要。尽管通常使用数值方法来解决PDE,但机器学习的最新成功(ML)表明,ML方法可以提供为PDE找到解决方案的新途径。 ML在计算流体动力学(CFD)中越来越存在。但是,到目前为止,还没有通用ML-CFD软件包,该软件包提供1)强大的最新数值方法,2)ML与CFD的无缝杂交以及3)自动分化(AD)功能。 AD特别是ML-CFD研究至关重要的,因为它提供了梯度信息并可以优化先前存在和新型CFD模型。在这项工作中,我们提出了JAX-Fluids:用于可压缩两相流的全面完全不同的CFD Python求解器。 Jax-Fluids允许模拟具有三维湍流,可压缩性效应和两相流的现象的复杂流体动力学。完全用JAX编写,将现有的ML模型包括在提出的框架中是很简单的。此外,jax-fluids可以启用端到端优化。即,可以通过通过整个CFD算法向反向传播的梯度进行优化ML模型,因此不仅包含基础PDE的信息,还包含应用数值方法的信息。我们认为,像Jax-Fluids这样的Python软件包对于促进ML和CFD交集的研究至关重要,并且可能为一个可微分的流体动力学时代铺平道路。

Physical systems are governed by partial differential equations (PDEs). The Navier-Stokes equations describe fluid flows and are representative of nonlinear physical systems with complex spatio-temporal interactions. Fluid flows are omnipresent in nature and engineering applications, and their accurate simulation is essential for providing insights into these processes. While PDEs are typically solved with numerical methods, the recent success of machine learning (ML) has shown that ML methods can provide novel avenues of finding solutions to PDEs. ML is becoming more and more present in computational fluid dynamics (CFD). However, up to this date, there does not exist a general-purpose ML-CFD package which provides 1) powerful state-of-the-art numerical methods, 2) seamless hybridization of ML with CFD, and 3) automatic differentiation (AD) capabilities. AD in particular is essential to ML-CFD research as it provides gradient information and enables optimization of preexisting and novel CFD models. In this work, we propose JAX-FLUIDS: a comprehensive fully-differentiable CFD Python solver for compressible two-phase flows. JAX-FLUIDS allows the simulation of complex fluid dynamics with phenomena like three-dimensional turbulence, compressibility effects, and two-phase flows. Written entirely in JAX, it is straightforward to include existing ML models into the proposed framework. Furthermore, JAX-FLUIDS enables end-to-end optimization. I.e., ML models can be optimized with gradients that are backpropagated through the entire CFD algorithm, and therefore contain not only information of the underlying PDE but also of the applied numerical methods. We believe that a Python package like JAX-FLUIDS is crucial to facilitate research at the intersection of ML and CFD and may pave the way for an era of differentiable fluid dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源