论文标题

关于计算有限样本的高维型希尔伯特评估函数的有效算法,用于计算最接近最佳的多项式近似值

On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples

论文作者

Adcock, Ben, Brugiapaglia, Simone, Dexter, Nick, Moraga, Sebastian

论文摘要

稀疏的多项式近似是必不可少的,对于有限的样品中近似平滑,高或无限差的函数。这是计算科学和工程中的关键任务,例如在不确定性量化中替代建模,其中该函数是参数或随机微分方程(DE)的解决方案图。然而,稀疏的多项式近似缺乏完整的理论。一方面,有一个完善的关于最佳$ s $ term多项式近似的理论,该理论主张了全体形态函数的指数或代数收敛速率。另一方面,有越来越成熟的方法,例如用于计算此类近似值的(加权)$ \ ell^1 $ - 毫米化。尽管这些方法的样本复杂性已通过压缩感测分析,但尚不完全了解它们是否达到最佳$ S $ term近似速率。此外,这些方法本身不是算法,因为它们涉及非线性优化问题的精确最小化。 本文缩小了这些差距。具体而言,我们考虑以下问题:是否有可靠,有效的算法来计算有限或无限二维,霍尔伯特和希尔伯特评估功能的近似值,从有限的样本中获得最佳的$ s $ term rate?我们通过引入算法和理论保证,确定融合的指数或代数速率,以及对采样,算法和物理离散错误的鲁棒性。我们可以解决标量和希尔伯特值函数,这是参数或随机DES的关键。我们的结果涉及对现有技术的重大发展,包括一种新型的重新开始的原始二次迭代,用于解决希尔伯特空间中的加权$ \ ell^1 $ - 毫米化问题。我们的理论是通过证明这些算法的功效的数值实验来补充的。

Sparse polynomial approximation has become indispensable for approximating smooth, high- or infinite-dimensional functions from limited samples. This is a key task in computational science and engineering, e.g., surrogate modelling in uncertainty quantification where the function is the solution map of a parametric or stochastic differential equation (DE). Yet, sparse polynomial approximation lacks a complete theory. On the one hand, there is a well-developed theory of best $s$-term polynomial approximation, which asserts exponential or algebraic rates of convergence for holomorphic functions. On the other, there are increasingly mature methods such as (weighted) $\ell^1$-minimization for computing such approximations. While the sample complexity of these methods has been analyzed with compressed sensing, whether they achieve best $s$-term approximation rates is not fully understood. Furthermore, these methods are not algorithms per se, as they involve exact minimizers of nonlinear optimization problems. This paper closes these gaps. Specifically, we consider the following question: are there robust, efficient algorithms for computing approximations to finite- or infinite-dimensional, holomorphic and Hilbert-valued functions from limited samples that achieve best $s$-term rates? We answer this affirmatively by introducing algorithms and theoretical guarantees that assert exponential or algebraic rates of convergence, along with robustness to sampling, algorithmic, and physical discretization errors. We tackle both scalar- and Hilbert-valued functions, this being key to parametric or stochastic DEs. Our results involve significant developments of existing techniques, including a novel restarted primal-dual iteration for solving weighted $\ell^1$-minimization problems in Hilbert spaces. Our theory is supplemented by numerical experiments demonstrating the efficacy of these algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源