论文标题
SPEQNET:稀疏感知置换等值图网络
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
论文作者
论文摘要
尽管(消息通话)图形神经网络在近似图表或一般关系数据上近似置换量等函数方面具有明显的局限性,但更具表现力的高阶图神经网络不会扩展到大图。他们要么在$ k $ - 订单张量子上操作,要么考虑所有$ k $ node子图,这意味着在内存需求中对$ k $的指数依赖,并且不适合图表的稀疏性。通过为图同构问题引入新的启发式方法,我们设计了一类通用的,置换量表的图形网络,与以前的体系结构不同,该网络在表达性和可伸缩性之间提供了细粒度的控制,并适应了图的稀疏性。这些体系结构与监督节点和图形级别的标准高阶网络以及回归体系中的标准高阶图网络相比,计算时间大大减少,同时在预测性能方面显着改善了标准图神经网络和图形内核体系结构。
While (message-passing) graph neural networks have clear limitations in approximating permutation-equivariant functions over graphs or general relational data, more expressive, higher-order graph neural networks do not scale to large graphs. They either operate on $k$-order tensors or consider all $k$-node subgraphs, implying an exponential dependence on $k$ in memory requirements, and do not adapt to the sparsity of the graph. By introducing new heuristics for the graph isomorphism problem, we devise a class of universal, permutation-equivariant graph networks, which, unlike previous architectures, offer a fine-grained control between expressivity and scalability and adapt to the sparsity of the graph. These architectures lead to vastly reduced computation times compared to standard higher-order graph networks in the supervised node- and graph-level classification and regression regime while significantly improving over standard graph neural network and graph kernel architectures in terms of predictive performance.