论文标题

深度推荐系统的汽车:调查

AutoML for Deep Recommender Systems: A Survey

论文作者

Zheng, Ruiqi, Qu, Liang, Cui, Bin, Shi, Yuhui, Yin, Hongzhi

论文摘要

推荐系统在信息过滤中起着重要作用,并在电子商务和社交媒体等不同方案中使用。随着深度学习的繁荣,深度推荐系统通过捕获非线性信息和项目用户关系来表现出卓越的性能。但是,深度推荐系统的设计在很大程度上取决于人类的经验和专业知识。为了解决此问题,引入了自动化的机器学习(AUTOML),以自动为Deep Pusementer Systems的不同部分寻找适当的候选者。这项调查对该领域的文献进行了全面的评论。首先,我们为Automl提出了一个针对深度推荐系统(Autorecsys)的抽象概念,该概念描述了其构建块,并将其与常规的汽车技术和推荐系统区分开来。其次,我们将分类学作为一个分类框架,其中包含功能选择搜索,嵌入维度搜索,功能交互搜索,模型体系结构搜索和其他组件搜索。此外,我们特别强调了搜索空间和搜索策略,因为它们是连接每个类别中所有方法并使从业者能够分析和比较各种方法的共同点。最后,我们提出了四个未来有希望的研究方向,这些方向将领导这一研究。

Recommender systems play a significant role in information filtering and have been utilized in different scenarios, such as e-commerce and social media. With the prosperity of deep learning, deep recommender systems show superior performance by capturing non-linear information and item-user relationships. However, the design of deep recommender systems heavily relies on human experiences and expert knowledge. To tackle this problem, Automated Machine Learning (AutoML) is introduced to automatically search for the proper candidates for different parts of deep recommender systems. This survey performs a comprehensive review of the literature in this field. Firstly, we propose an abstract concept for AutoML for deep recommender systems (AutoRecSys) that describes its building blocks and distinguishes it from conventional AutoML techniques and recommender systems. Secondly, we present a taxonomy as a classification framework containing feature selection search, embedding dimension search, feature interaction search, model architecture search, and other components search. Furthermore, we put a particular emphasis on the search space and search strategy, as they are the common thread to connect all methods within each category and enable practitioners to analyze and compare various approaches. Finally, we propose four future promising research directions that will lead this line of research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源