论文标题
升压Reissner-Nordström广告黑洞的准模式和稳定性
Quasinormal modes and stability of boosted Reissner-Nordström AdS black holes
论文作者
论文摘要
我们研究了针对线性标量扰动的加速广告黑洞的数值稳定性。特别是,我们研究了Schwarzschild和Reissner-Nordström广告黑洞上探头非最少耦合标量场的演变,并通过计算扰动光谱的准模式而具有较小的加速度。我们分解标量klein-gordon方程,并使用不同的数值方法研究其角和径向 - 周期性部分的特征值问题。角部分是根据HEUN解决方案编写的,并通过Frobenius方法扩展,该方法使特征值在质量上与通过球形谐波表示获得的特征值相似。径向 - 周期性的演化呈现出稳定的磁场曲线,该轮廓是根据抑制和纯粹的假想模式的震荡而分解的。我们计算了不同时空参数的各个频率,显示了模式中的精细结构的存在,对于真实和虚构部分,这些部分都不存在于未加速的ADS黑洞中。我们的结果表明,Schwarzschild和Reissner-Nordström广告黑色孔具有较小的加速度对线性标量扰动是稳定的。
We investigate the numerical stability of accelerated AdS black holes against linear scalar perturbations. In particular, we study the evolution of a probe non-minimally coupled scalar field on Schwarzschild and Reissner-Nordström AdS black holes with small accelerations by computing the quasinormal modes of the perturbation spectrum. We decompose the scalar field Klein-Gordon equation and study the eigenvalue problem for its angular and radial-temporal parts using different numerical methods. The angular part is written in terms of the Heun solution and expanded through the Frobenius method which turns out to give eigenvalues qualitatively similar to the ones obtained through the spherical harmonics representation. The radial-temporal evolution renders a stable field profile which is decomposed in terms of damped and purely imaginary oscillations of the quasinormal modes. We calculate the respective frequencies for different spacetime parameters showing the existence of a fine-structure in the modes, for both real and imaginary parts, which is not present in the non-accelerated AdS black holes. Our results indicate that the Schwarzschild and Reissner-Nordström AdS black holes with small accelerations are stable against linear scalar perturbations.