论文标题
具有优化的浮点聚合点的多边界服务器辅助联盟学习
Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized Floating Aggregation Point
论文作者
论文摘要
我们提出了合作边缘辅助的动态联合学习(CE-FL)。 CE-FL引入了分布式机器学习(ML)体系结构,该架构在末端设备上进行数据收集,而模型培训是在末端设备和边缘服务器进行合作进行的,通过从端设备到边缘服务器通过基站通过基础设备卸载的数据启用。 CE-FL还引入了浮动聚合点,在该点处,在设备上生成的本地模型和服务器在边缘服务器上进行聚合,该模型从一个模型培训回合到另一个模型培训,以应对数据分布和用户的移动性来应对网络的发展。 CE-FL考虑了网络元素在通信/计算模型方面的异质性以及彼此之间的邻近性。 CE-FL进一步假定一个动态环境,并在网络设备的在线数据变化,这会导致ML模型性能的漂移。我们对CE-FL期间采取的过程进行建模,并对其ML模型培训进行分析收敛分析。然后,我们制定了网络感知的CE-FL,旨在通过调整其对学习过程的贡献来适应性地优化所有网络元素,事实证明,这是一个非convex混合整数问题。由系统的大规模激励,我们提出了一个分布式优化求解器,以分解整个网络元素的解决方案的计算。我们最终通过从现实世界测试台上收集的数据来证明框架的有效性。
We propose cooperative edge-assisted dynamic federated learning (CE-FL). CE-FL introduces a distributed machine learning (ML) architecture, where data collection is carried out at the end devices, while the model training is conducted cooperatively at the end devices and the edge servers, enabled via data offloading from the end devices to the edge servers through base stations. CE-FL also introduces floating aggregation point, where the local models generated at the devices and the servers are aggregated at an edge server, which varies from one model training round to another to cope with the network evolution in terms of data distribution and users' mobility. CE-FL considers the heterogeneity of network elements in terms of communication/computation models and the proximity to one another. CE-FL further presumes a dynamic environment with online variation of data at the network devices which causes a drift at the ML model performance. We model the processes taken during CE-FL, and conduct analytical convergence analysis of its ML model training. We then formulate network-aware CE-FL which aims to adaptively optimize all the network elements via tuning their contribution to the learning process, which turns out to be a non-convex mixed integer problem. Motivated by the large scale of the system, we propose a distributed optimization solver to break down the computation of the solution across the network elements. We finally demonstrate the effectiveness of our framework with the data collected from a real-world testbed.