论文标题
关键雪崩的有限尺寸缩放
Finite-size scaling of critical avalanches
论文作者
论文摘要
我们检查了在自组织的关键系统中观察到的雪崩大小的概率分布。尽管有限的系统大小,截止截止的幂律分布是典型的行为,但系统的研究表明,在固定的雪崩大小时增加系统尺寸可能会减小。我们实施缩放方法并确定缩放函数。数据崩溃确保了关键指数的正确估计,并区分了与雪崩大小和系统大小有关的两个指数。我们的简单分析提供了惊人的含义。虽然雪崩大小指数的确切值仍然难以捉摸正方形晶格上的原型沙盘,但我们建议指数应为1。仿真结果表示分布显示对数系统大小依赖性,与归一化条件一致。我们还认为,对于具有散装驱动器的火车或奥斯陆沙珀模型,雪崩尺寸指数略小于1,这与先前的估计值1.11有显着差异。
We examine probability distribution for avalanche sizes observed in self-organized critical systems. While a power-law distribution with a cutoff because of finite system size is typical behavior, a systematic investigation reveals that it may decrease on increasing the system size at a fixed avalanche size. We implement the scaling method and identify scaling functions. The data collapse ensures a correct estimation of the critical exponents and distinguishes two exponents related to avalanche size and system size. Our simple analysis provides striking implications. While the exact value for avalanches size exponent remains elusive for the prototype sandpile on a square lattice, we suggest the exponent should be 1. The simulation results represent that the distribution shows a logarithmic system size dependence, consistent with the normalization condition. We also argue that for train or Oslo sandpile model with bulk drive, the avalanche size exponent is slightly less than 1 which is significantly different from the previous estimate 1.11.