论文标题
不可压缩矢量场的建设性可控性
Constructive controllability for incompressible vector fields
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We give a constructive proof of a global controllability result for an autonomous system of ODEs guided by bounded locally Lipschitz and divergence free (i.e.\ incompressible) vector field, when the phase space is the whole Euclidean space and the vector field satisfies so-called vanishing mean drift condition. For the case when the ODE is defined over some smooth compact connected Riemannian manifold, we significantly strengthen the assertion of the known controllability theorem in absence of nonholonomic constraints by proving that one can find a control steering the state vector from one given point to another by using the observations of only the state vector, i.e., in other words, by changing slightly the vector field, and such a change can be made small not only in uniform, but also in Lipschitz (i.e. $C^1$) topology.