论文标题
通过反设计实现的纳米级的室温强耦合
Room-temperature strong coupling at the nanoscale achieved by inverse design
论文作者
论文摘要
等离子体纳米腔与单层半导体之间的室温强耦合是通往高效的,集成的光 - 物质相互作用的突出途径。但是,由于强耦合对腔和发射极的各种特性以及相互作用的次波长量表,因此设计系统的设计是具有挑战性的。在这项工作中,我们开发了一种方法,用于通过与原子上薄的WS2层相连的等离子质量层的杂种纳米结构,通过近场等离子响应的逆设计表现出极端的狂犬分裂值。与诸如质量因子或模式量之类的常见措施相反,我们的方法依赖于基于重叠的集体度量。我们在实验中测量了纳米ant纳纳设计的狂犬分裂值的大量值,同时为几种其他类型的纳米结构提供理论上最佳的配置。我们的结果为在集成平台中,用于经典和量子 - 光学应用程序中最大化光线相互作用开辟了道路。
Room-temperature strong coupling between plasmonic nanocavities and monolayer semiconductors is a prominent path towards efficient, integrated light-matter interactions. However, designing such systems is challenging due to the nontrivial dependence of the strong coupling on various properties of the cavity and emitter, as well as the subwavelength scale of the interaction. In this work, we develop a methodology for obtaining hybrid nanostructures consisting of plasmonic metasurfaces coupled to atomically thin WS2 layers, exhibiting extreme values of Rabi splitting, by inverse design of the near-field plasmonic response. Contrary to common measures such as the quality factor or the mode volume, our method relies on an overlap-integral-based metric. We experimentally measure large values of Rabi splitting for our nanoantenna designs, while providing theoretically optimal configurations for several additional types of nanostructures. Our results open a path to maximizing light-matter interactions in integrated platforms, for classical and quantum-optical applications.