论文标题

通过基于图的元聚类和正则适应的局部自适应面部识别

Local-Adaptive Face Recognition via Graph-based Meta-Clustering and Regularized Adaptation

论文作者

Zhu, Wenbin, Wang, Chien-Yi, Tseng, Kuan-Lun, Lai, Shang-Hong, Wang, Baoyuan

论文摘要

由于对数据隐私的关注不断增加,因此可以合理地假设本地客户端数据不能转移到集中式服务器,也不能提供其相关的身份标签。为了支持持续学习并填补最后一英里的质量差距,我们引入了一个新的问题设置,称为局部自适应面部识别(LAFR)。 LAFR在部署最初的全局模型后利用特定于环境的本地数据,旨在通过自动且不可忽视的本地适应模型来获得最佳性能,而不是修复其最初的全球模型。我们通过基于图形卷积网络(GCN)的新提出的嵌入聚类模型来实现这一目标,该模型通过元优化过程训练。与以前的作品相比,我们的元聚类模型可以在看不见的本地环境中很好地概括。借助聚类结果的伪身份标签,我们进一步介绍了新颖的正则化技术,以提高模型适应性性能。关于种族和内部传感器适应性的广泛实验表明,我们提出的解决方案对于在每个特定环境中调整面部识别模型更有效。同时,我们表明LAFR可以通过更新的本地模型通过简单的联合聚合进一步改善全局模型。

Due to the rising concern of data privacy, it's reasonable to assume the local client data can't be transferred to a centralized server, nor their associated identity label is provided. To support continuous learning and fill the last-mile quality gap, we introduce a new problem setup called Local-Adaptive Face Recognition (LaFR). Leveraging the environment-specific local data after the deployment of the initial global model, LaFR aims at getting optimal performance by training local-adapted models automatically and un-supervisely, as opposed to fixing their initial global model. We achieve this by a newly proposed embedding cluster model based on Graph Convolution Network (GCN), which is trained via meta-optimization procedure. Compared with previous works, our meta-clustering model can generalize well in unseen local environments. With the pseudo identity labels from the clustering results, we further introduce novel regularization techniques to improve the model adaptation performance. Extensive experiments on racial and internal sensor adaptation demonstrate that our proposed solution is more effective for adapting face recognition models in each specific environment. Meanwhile, we show that LaFR can further improve the global model by a simple federated aggregation over the updated local models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源