论文标题

利用临床相关的生物特征约束来监督精确卡尺放置的深度学习模型,以获得胎儿大脑的超声测量

Leveraging Clinically Relevant Biometric Constraints To Supervise A Deep Learning Model For The Accurate Caliper Placement To Obtain Sonographic Measurements Of The Fetal Brain

论文作者

Shankar, Hari, Narayan, Adithya, Jain, Shefali, Singh, Divya, Vyas, Pooja, Hegde, Nivedita, Kar, Purbayan, Lad, Abhi, Thang, Jens, Atada, Jagruthi, Nguyen, Duy, Roopa, PS, Vasudeva, Akhila, Radhakrishnan, Prathima, Devalla, Sripad Krishna

论文摘要

多项研究表明,从孕妇中期超声检查(USG)检查获得标准化的胎儿脑生物特征?获得这些测量值是高度主观的,专业驱动的,需要多年的培训经验,从而限制了所有怀孕母亲的优质产前护理。在这项研究中,我们提出了一种深度学习方法(DL)方法,以通过准确和自动化的卡尺放置(每个生物图2)将其作为地标检测问题进行建模,从而从跨炉平面(TC)的2D USG图像(TC)计算3个关键的胎儿脑生物特征。我们利用临床相关的生物识别约束(卡尺点之间的关系)和与域相关的数据增强,以提高U-NET DL模型的准确性(训练/测试了:596张图像,473个受试者/143个图像,143个受试者)。我们进行了多个实验,证明了DL主链,数据增强,推广性和基准测试的影响,通过广泛的临床验证(DL与7位经验丰富的临床医生)对最新的最新方法进行了测试。在所有情况下,单个卡尺点和计算的生物特征的放置的平均误差都与临床医生之间的错误率相当。所提出的框架的临床翻译可以帮助新手用户从低资源环境中的新手使用,以对胎儿大脑超声图的可靠和标准化评估。

Multiple studies have demonstrated that obtaining standardized fetal brain biometry from mid-trimester ultrasonography (USG) examination is key for the reliable assessment of fetal neurodevelopment and the screening of central nervous system (CNS) anomalies. Obtaining these measurements is highly subjective, expertise-driven, and requires years of training experience, limiting quality prenatal care for all pregnant mothers. In this study, we propose a deep learning (DL) approach to compute 3 key fetal brain biometry from the 2D USG images of the transcerebellar plane (TC) through the accurate and automated caliper placement (2 per biometry) by modeling it as a landmark detection problem. We leveraged clinically relevant biometric constraints (relationship between caliper points) and domain-relevant data augmentation to improve the accuracy of a U-Net DL model (trained/tested on: 596 images, 473 subjects/143 images, 143 subjects). We performed multiple experiments demonstrating the effect of the DL backbone, data augmentation, generalizability and benchmarked against a recent state-of-the-art approach through extensive clinical validation (DL vs. 7 experienced clinicians). For all cases, the mean errors in the placement of the individual caliper points and the computed biometry were comparable to error rates among clinicians. The clinical translation of the proposed framework can assist novice users from low-resource settings in the reliable and standardized assessment of fetal brain sonograms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源