论文标题
Mi-Bminet:用于运动成像脑的有效卷积神经网络 - 带有EEG通道选择的机器接口
MI-BMInet: An Efficient Convolutional Neural Network for Motor Imagery Brain--Machine Interfaces with EEG Channel Selection
论文作者
论文摘要
基于运动图像(MI)的脑界面(BMI)可以使用脑信号控制设备,而主题会想象进行运动。它在假体控制和运动康复中起着至关重要的作用。为了提高用户舒适度,保留数据隐私并减少系统的延迟,可穿戴BMI的新趋势是在边缘设备上嵌入的低功率微控制器单元(MCUS)执行算法,以实时处理电脑术(EEG)数据,以实时接近传感器。但是,文献中存在的大多数分类模型都过于调整资源,这使得它们不适合低功率MCU。本文提出了一个有效的基于脑电图的MI分类的有效卷积神经网络(CNN),该网络的准确性可比性,同时降低了资源要求的数量级,并且比先长期电池运行的先进模型(SOA)模型要比先进的(SOA)模型高得多。为了进一步降低模型的复杂性,我们提出了一种基于空间过滤器的自动通道选择方法,并将权重和激活量化为8位精度,精度损失可忽略不计。最后,我们在领先的平行超低功率(PULP)MCUS上实施并评估了所提出的模型。最终的2级解决方案的运行时间为2.95 ms/推断,精度为82.51%,同时使用6.4倍的EEG频道,成为嵌入式MI-BMI的新SOA,并定义了精确折衷,资源成本和功率使用的新型Pareto边界。
A brain--machine interface (BMI) based on motor imagery (MI) enables the control of devices using brain signals while the subject imagines performing a movement. It plays a vital role in prosthesis control and motor rehabilitation. To improve user comfort, preserve data privacy, and reduce the system's latency, a new trend in wearable BMIs is to execute algorithms on low-power microcontroller units (MCUs) embedded on edge devices to process the electroencephalographic (EEG) data in real-time close to the sensors. However, most of the classification models present in the literature are too resource-demanding, making them unfit for low-power MCUs. This paper proposes an efficient convolutional neural network (CNN) for EEG-based MI classification that achieves comparable accuracy while being orders of magnitude less resource-demanding and significantly more energy-efficient than state-of-the-art (SoA) models for a long-lifetime battery operation. To further reduce the model complexity, we propose an automatic channel selection method based on spatial filters and quantize both weights and activations to 8-bit precision with negligible accuracy loss. Finally, we implement and evaluate the proposed models on leading-edge parallel ultra-low-power (PULP) MCUs. The final 2-class solution consumes as little as 30 uJ/inference with a runtime of 2.95 ms/inference and an accuracy of 82.51% while using 6.4x fewer EEG channels, becoming the new SoA for embedded MI-BMI and defining a new Pareto frontier in the three-way trade-off among accuracy, resource cost, and power usage.