论文标题
通过执行跨域特征地图一致性来适应CT重建内核
Adaptation to CT Reconstruction Kernels by Enforcing Cross-domain Feature Maps Consistency
论文作者
论文摘要
深度学习方法为分析胸部计算机断层扫描(CT)图像的冠状病毒病(COVID-19)提供了重要帮助,包括识别,严重性评估和分割。尽管较早开发的方法解决了缺乏数据和特定注释,但目前的目标是为临床使用构建强大的算法,并具有较大的可用数据库。借助较大的数据集,会出现域移位问题,从而影响看不见数据的方法的性能。 CT图像中域移动的关键来源之一是用于从原始数据生成图像的重建内核的差异(Sinograms)。在本文中,我们显示了在平滑并在尖锐的重建核上进行测试的模型的Covid-19分割质量的下降。此外,我们比较了解决该问题的几种领域适应方法,例如特定于任务的增强和无监督的对抗性学习。最后,我们提出了一种不受监督的适应方法,称为F-偶然性,以优于先前的方法。我们的方法利用了一组未标记的CT图像对,它们仅在每对内的重建内核上有所不同。它通过最大程度地减少配对特征映射之间的均方误差(MSE)来实现网络隐藏表示形式(特征图)的相似性。我们显示了我们的方法在测试数据集上以看不见的锋利内核达到0.64骰子得分,而基线模型的0.56骰子得分。此外,配对图像上的预测之间的F频率得分为0.80个骰子得分,这几乎使基线得分的分数翻了一番,超过了其他方法。我们还展示了F频性,可以更好地概括看不见的内核,并且没有特定的语义含量,例如COVID-19病变的存在。
Deep learning methods provide significant assistance in analyzing coronavirus disease (COVID-19) in chest computed tomography (CT) images, including identification, severity assessment, and segmentation. Although the earlier developed methods address the lack of data and specific annotations, the current goal is to build a robust algorithm for clinical use, having a larger pool of available data. With the larger datasets, the domain shift problem arises, affecting the performance of methods on the unseen data. One of the critical sources of domain shift in CT images is the difference in reconstruction kernels used to generate images from the raw data (sinograms). In this paper, we show a decrease in the COVID-19 segmentation quality of the model trained on the smooth and tested on the sharp reconstruction kernels. Furthermore, we compare several domain adaptation approaches to tackle the problem, such as task-specific augmentation and unsupervised adversarial learning. Finally, we propose the unsupervised adaptation method, called F-Consistency, that outperforms the previous approaches. Our method exploits a set of unlabeled CT image pairs which differ only in reconstruction kernels within every pair. It enforces the similarity of the network hidden representations (feature maps) by minimizing mean squared error (MSE) between paired feature maps. We show our method achieving 0.64 Dice Score on the test dataset with unseen sharp kernels, compared to the 0.56 Dice Score of the baseline model. Moreover, F-Consistency scores 0.80 Dice Score between predictions on the paired images, which almost doubles the baseline score of 0.46 and surpasses the other methods. We also show F-Consistency to better generalize on the unseen kernels and without the specific semantic content, e.g., presence of the COVID-19 lesions.