论文标题
与远程分散的流行模型中的群集
Clusters in an epidemic model with long-range dispersal
论文作者
论文摘要
在存在远距离扩散的情况下,流行病扩散在称为簇的空间断开区域。在这里,我们在超临界(爆发)和关键制度中都在可解决的模型中准确表征了它们的统计特性。我们确定了两个不同的长度尺度,对应于流行病的散装和郊区。我们揭示了一个非平凡的关键指数,该指数控制着集群数,其大小的分布以及它们之间的距离。我们还讨论了将具有远距离弹性的雪崩销售的应用。
In presence of long range dispersal, epidemics spread in spatially disconnected regions known as clusters. Here, we characterize exactly their statistical properties in a solvable model, in both the supercritical (outbreak) and critical regimes. We identify two diverging length scales, corresponding to the bulk and the outskirt of the epidemic. We reveal a nontrivial critical exponent that governs the cluster number, the distribution of their sizes and of the distances between them. We also discuss applications to depinning avalanches with long range elasticity.