论文标题
通过非参数贝叶斯推断,基于原始的形状抽象
Primitive-based Shape Abstraction via Nonparametric Bayesian Inference
论文作者
论文摘要
多年来,3D形状抽象引起了极大的兴趣。除了网格和体素等低级表示外,研究人员还试图用基本的几何原始物质在语义上抽象的复杂对象。最近的深度学习方法在很大程度上依赖于数据集,而一般性有限,无法看到类别。此外,准确地将物体抽象而又使用少数原始素仍然是一个挑战。在本文中,我们提出了一种新型的非参数贝叶斯统计方法来推断从点云中推断出由未知数的几何原始物组成的抽象。我们将点的产生模拟为从高斯超季节模型(GSTM)的无限混合物采样的观测值。我们的方法将抽象作为聚类问题提出,其中:1)每个点都通过中国餐厅流程(CRP)分配给集群; 2)针对每个集群优化了原始表示形式,3)合并后制品合并以提供简洁的表示。我们在两个数据集上进行了广泛的实验。结果表明,我们的方法在准确性方面优于最先进的方法,并且可以推广到各种类型的对象。
3D shape abstraction has drawn great interest over the years. Apart from low-level representations such as meshes and voxels, researchers also seek to semantically abstract complex objects with basic geometric primitives. Recent deep learning methods rely heavily on datasets, with limited generality to unseen categories. Furthermore, abstracting an object accurately yet with a small number of primitives still remains a challenge. In this paper, we propose a novel non-parametric Bayesian statistical method to infer an abstraction, consisting of an unknown number of geometric primitives, from a point cloud. We model the generation of points as observations sampled from an infinite mixture of Gaussian Superquadric Taper Models (GSTM). Our approach formulates the abstraction as a clustering problem, in which: 1) each point is assigned to a cluster via the Chinese Restaurant Process (CRP); 2) a primitive representation is optimized for each cluster, and 3) a merging post-process is incorporated to provide a concise representation. We conduct extensive experiments on two datasets. The results indicate that our method outperforms the state-of-the-art in terms of accuracy and is generalizable to various types of objects.