论文标题

一种用有限的数据建模生物模式形成的贝叶斯方法

A Bayesian Approach to Modelling Biological Pattern Formation with Limited Data

论文作者

Kazarnikov, Alexey, Scheichl, Robert, Haario, Heikki, Marciniak-Czochra, Anna

论文摘要

生物组织中的模式形成在生物体的发展中起着重要作用。自艾伦·图灵(Alan Turing)的经典工作以来,一种杰出的建模方式是通过反应扩散机制。最近,已经提出了替代模型,该模型将扩散分子信号的动力学与组织力学联系起来。为了区分不同的模型,应将它们与实验观察结果进行比较。但是,在许多实验情况下,只能观察到模式形成过程的局限性,固定状态,而没有瞬态行为或初始状态。在所有替代模型中,基础动力学的不稳定性质严重使模型和参数识别复杂化,因为初始条件的小变化会导致不同的固定模式。为了克服此问题,模型的初始状态可以随机化。在后一种情况下,模型参数的固定值对应于模式家族,而不是固定的固定解决方案,并且将模型数据与模型输出直接比较的标准方法,例如,在最小二乘意义上是不合适的。取而代之的是,应该比较模式的统计特征,这很难在实际应用中通常有限的可用数据。为了解决这个问题,我们使用模式数据扩展了最近开发的参数识别统计方法,即所谓的相关积分可能性(CIL)方法。我们建议修改可以提高识别过程的准确性,而无需调整数据集。使用不同类别的模式形成模型对所提出的方法进行了测试。对于所有考虑的方程式,都提供了具有高效时间步进方案的数值求解器的平行实现。

Pattern formation in biological tissues plays an important role in the development of living organisms. Since the classical work of Alan Turing, a pre-eminent way of modelling has been through reaction-diffusion mechanisms. More recently, alternative models have been proposed, that link dynamics of diffusing molecular signals with tissue mechanics. In order to distinguish among different models, they should be compared to experimental observations. However, in many experimental situations only the limiting, stationary regime of the pattern formation process is observable, without knowledge of the transient behaviour or the initial state. The unstable nature of the underlying dynamics in all alternative models seriously complicates model and parameter identification, since small changes in the initial condition lead to distinct stationary patterns. To overcome this problem the initial state of the model can be randomised. In the latter case, fixed values of the model parameters correspond to a family of patterns rather than a fixed stationary solution, and standard approaches to compare pattern data directly with model outputs, e.g., in the least squares sense, are not suitable. Instead, statistical characteristics of the patterns should be compared, which is difficult given the typically limited amount of available data in practical applications. To deal with this problem, we extend a recently developed statistical approach for parameter identification using pattern data, the so-called Correlation Integral Likelihood (CIL) method. We suggest modifications that allow increasing the accuracy of the identification process without resizing the data set. The proposed approach is tested using different classes of pattern formation models. For all considered equations, parallel GPU-based implementations of the numerical solvers with efficient time stepping schemes are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源