论文标题
用于内容和任务意识到压缩荧光成像的可区分显微镜
Differentiable Microscopy for Content and Task Aware Compressive Fluorescence Imaging
论文作者
论文摘要
吞吐量和图像质量之间的权衡是显微镜的固有挑战。为了改善吞吐量,压缩成像不足的样本图像信号;然后,通过求解正规化的逆问题来重建图像。与传统的正规化器相比,基于深度学习的方法在压缩和图像质量方面取得了更大的成功。但是,采集过程中的信息损失设置了压缩范围。因此,压缩的进一步改善,而不损害重建质量是一个挑战。在这项工作中,我们提出了可区分的压缩荧光显微镜($ \partialμ$),其中包括具有可学习的物理参数(例如照明模式)的现实通用前向模型,以及一种新颖的物理启动的逆模型。级联模型是端到端的可区分,可以通过培训数据学习最佳的压缩抽样方案。通过我们的模型,我们对各种压缩显微镜配置进行了数千种数值实验。我们表明,学到的采样编码有关显微镜照明字段中标本的重要信息,可允许高达$ \ times 1024 $的更高压缩。我们进一步利用我们的框架进行任务意识到压缩。实验结果显示了细胞分割任务上的出色表现。
The trade-off between throughput and image quality is an inherent challenge in microscopy. To improve throughput, compressive imaging under-samples image signals; the images are then computationally reconstructed by solving a regularized inverse problem. Compared to traditional regularizers, Deep Learning based methods have achieved greater success in compression and image quality. However, the information loss in the acquisition process sets the compression bounds. Further improvement in compression, without compromising the reconstruction quality is thus a challenge. In this work, we propose differentiable compressive fluorescence microscopy ($\partial μ$) which includes a realistic generalizable forward model with learnable-physical parameters (e.g. illumination patterns), and a novel physics-inspired inverse model. The cascaded model is end-to-end differentiable and can learn optimal compressive sampling schemes through training data. With our model, we performed thousands of numerical experiments on various compressive microscope configurations. We show that learned sampling encodes important information about the specimens in the illumination field of the microscope allowing higher compression up to $\times 1024$. We further utilize our framework for Task Aware Compression. The experimental results show superior performance on the cell segmentation task.