论文标题

FisherMatch:通过基于熵过滤的半监督旋转回归

FisherMatch: Semi-Supervised Rotation Regression via Entropy-based Filtering

论文作者

Yin, Yingda, Cai, Yingcheng, Wang, He, Chen, Baoquan

论文摘要

从单个RGB图像估算3DOF旋转是一个重要但具有挑战性的问题。最近的作品取得了良好的性能,依靠大量昂贵的标记数据。为了减少监督量,我们首次提出了一个通用框架FisherMatch,用于半监督旋转回归,而无需假设任何特定领域的知识或配对数据。 FixMatch受到流行的半监督方法的启发,我们建议利用伪标签过滤,以促进从标记的数据到未标记的数据中的信息流到教师学生相互学习框架中。然而,将伪标签滤波机理纳入半监督旋转回归中是高度不平凡的,这主要是由于缺乏可靠的置信度置信度。在这项工作中,我们建议利用矩阵Fisher分布来构建旋转的概率模型,并设计基于基质的基于Fisher的回归器,以共同预测旋转及其预测不确定性。然后,我们建议将预测分布的熵用作置信度度量,这使我们能够对旋转回归进行伪标签过滤。为了监督这种分布样伪标签,我们进一步研究了如何在两个矩阵Fisher分布之间强制损失的问题。我们的广泛实验表明,即使在不同基准的标记数据比下,我们的方法也可以很好地工作,从而在监督学习和其他半监督学习基线方面实现了显着,一致的绩效。我们的项目页面在https://yd-yin.github.io/fishermatch上。

Estimating the 3DoF rotation from a single RGB image is an important yet challenging problem. Recent works achieve good performance relying on a large amount of expensive-to-obtain labeled data. To reduce the amount of supervision, we for the first time propose a general framework, FisherMatch, for semi-supervised rotation regression, without assuming any domain-specific knowledge or paired data. Inspired by the popular semi-supervised approach, FixMatch, we propose to leverage pseudo label filtering to facilitate the information flow from labeled data to unlabeled data in a teacher-student mutual learning framework. However, incorporating the pseudo label filtering mechanism into semi-supervised rotation regression is highly non-trivial, mainly due to the lack of a reliable confidence measure for rotation prediction. In this work, we propose to leverage matrix Fisher distribution to build a probabilistic model of rotation and devise a matrix Fisher-based regressor for jointly predicting rotation along with its prediction uncertainty. We then propose to use the entropy of the predicted distribution as a confidence measure, which enables us to perform pseudo label filtering for rotation regression. For supervising such distribution-like pseudo labels, we further investigate the problem of how to enforce loss between two matrix Fisher distributions. Our extensive experiments show that our method can work well even under very low labeled data ratios on different benchmarks, achieving significant and consistent performance improvement over supervised learning and other semi-supervised learning baselines. Our project page is at https://yd-yin.github.io/FisherMatch.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源