论文标题
信息流拓扑对使用随机控制的紧密耦合连接和自动化车辆的安全性的影响
Impact of Information Flow Topology on Safety of Tightly-coupled Connected and Automated Vehicle Platoons Utilizing Stochastic Control
论文作者
论文摘要
通过车辆到所有(V2X)通信来实现的合作驾驶,预计将极大地有助于运输系统的安全性和效率。合作自适应巡航控制(CACC)是一种主要的合作驾驶应用程序,近年来一直是许多研究的主题。使用CACC背后的主要动机是减少交通拥堵并改善交通流量,交通吞吐量和公路容量。由于合作车辆之间的信息流可以显着影响排的动力学,因此控制组件的设计和性能密切取决于通信组件的性能。另外,信息流拓扑(IFT)的选择可能会影响某些排行体特性,例如稳定性和可扩展性。尽管可以通过使用V2X通信将合作车辆的感知扩展到多个前辈信息,但通信技术仍然遭受可伸缩性问题的困扰。因此,需要合作工具来预测彼此的行为,以弥补非理想交流的影响。提出了基于模型的通信(MBC)的概念,以通过引入新的灵活内容结构来广播联合车辆动态/驱动程序行为模型,以增强合作车辆的感知。通过利用非参数(贝叶斯)建模方案,即高斯工艺回归(GPR)和MBC概念,本文开发了一种离散的混合随机模型预测控制方法,并研究了沟通损失以及不同信息流量的影响,以及不同信息流动拓扑对等电量的性能和安全性。结果表明,使用更多的车辆信息,可以改善响应时间和安全性,从而验证了合作的潜力,以减轻干扰并改善交通流量和安全性。
Cooperative driving, enabled by Vehicle-to-Everything (V2X) communication, is expected to significantly contribute to the transportation system's safety and efficiency. Cooperative Adaptive Cruise Control (CACC), a major cooperative driving application, has been the subject of many studies in recent years. The primary motivation behind using CACC is to reduce traffic congestion and improve traffic flow, traffic throughput, and highway capacity. Since the information flow between cooperative vehicles can significantly affect the dynamics of a platoon, the design and performance of control components are tightly dependent on the communication component performance. In addition, the choice of Information Flow Topology (IFT) can affect certain platoons properties such as stability and scalability. Although cooperative vehicles perception can be expanded to multiple predecessors information by using V2X communication, the communication technologies still suffer from scalability issues. Therefore, cooperative vehicles are required to predict each other's behavior to compensate for the effects of non-ideal communication. The notion of Model-Based Communication (MBC) was proposed to enhance cooperative vehicles perception under non-ideal communication by introducing a new flexible content structure for broadcasting joint vehicles dynamic/drivers behavior models. By utilizing a non-parametric (Bayesian) modeling scheme, i.e., Gaussian Process Regression (GPR), and the MBC concept, this paper develops a discrete hybrid stochastic model predictive control approach and examines the impact of communication losses and different information flow topologies on the performance and safety of the platoon. The results demonstrate an improvement in response time and safety using more vehicles information, validating the potential of cooperation to attenuate disturbances and improve traffic flow and safety.