论文标题

任何非本地游戏的量子优势

Quantum Advantage from Any Non-Local Game

论文作者

Kalai, Yael, Lombardi, Alex, Vaikuntanathan, Vinod, Yang, Lisa

论文摘要

我们展示了一种将任何$ k $ prover的非本地游戏编译成单个互动游戏的一般方法,该游戏可保证相同(量子)完整性和(经典)声音(经典)声音(在安全参数中可忽略不计的添加因素)。我们的编译器使用任何量子同构加密方案(Mahadev,Focs,2018; Brakerski,Crypto 2018),可满足相对于辅助(量子)输入的自然形式。同态加密方案被用作模拟空间分离效果的加密机制,并且需要评估$ k-1 $ prover策略(以$ k $)对加密查询进行评估。 从著名的CHSH游戏开始(Clauser,Horne,Shimonyi和Holt,《物理评论》 1969年),与丰富的(纠缠)多杆非本地游戏的丰富文献结合使用,我们的编译器为构造机制提供了一个广泛的框架,以实现经典验证量子优势。

We show a general method of compiling any $k$-prover non-local game into a single-prover interactive game maintaining the same (quantum) completeness and (classical) soundness guarantees (up to negligible additive factors in a security parameter). Our compiler uses any quantum homomorphic encryption scheme (Mahadev, FOCS 2018; Brakerski, CRYPTO 2018) satisfying a natural form of correctness with respect to auxiliary (quantum) input. The homomorphic encryption scheme is used as a cryptographic mechanism to simulate the effect of spatial separation, and is required to evaluate $k-1$ prover strategies (out of $k$) on encrypted queries. In conjunction with the rich literature on (entangled) multi-prover non-local games starting from the celebrated CHSH game (Clauser, Horne, Shimonyi and Holt, Physical Review Letters 1969), our compiler gives a broad framework for constructing mechanisms to classically verify quantum advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源