论文标题

部分可观测时空混沌系统的无模型预测

Vulnerability Detection in Open Source Software: An Introduction

论文作者

Millar, Stuart

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper is an introductory discussion on the cause of open source software vulnerabilities, their importance in the cybersecurity ecosystem, and a selection of detection methods. A recent application security report showed 44% of applications contain critical vulnerabilities in an open source component, a concerning proportion. Most companies do not have a reliable way of being directly and promptly notified when zero-day vulnerabilities are found and then when patches are made available. This means attack vectors in open source exist longer than necessary. Conventional approaches to vulnerability detection are outlined alongside some newer research trends. A conclusion is made that it may not be possible to entirely replace expert human inspection of open source software, although it can be effectively augmented with techniques such as machine learning, IDE plug-ins and repository linking to make implementation and review less time intensive. Underpinning any technological advances should be better knowledge at the human level. Development teams need trained, coached and improved so they can implement open source more securely, know what vulnerabilities to look for and how to handle them. It is the use of this blended approach to detection which is key.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源