论文标题
COORDGAN:甘恩斯(Gans
CoordGAN: Self-Supervised Dense Correspondences Emerge from GANs
论文作者
论文摘要
最近的进步表明,生成的对抗网络(GAN)可以沿着语义上有意义的潜在方向(例如姿势,表达,布局等)综合具有光滑变化的图像,而这表明gans隐含地学习了跨图像的像素级对应关系,但很少有研究探索如何明确提取它们。在这项工作中,我们介绍了坐标GAN(COORDGAN),这是一种结构纹理散文的gan,它可以学习每个生成的图像的密集对应图。我们将不同图像的对应图表示为扭曲的坐标帧,从规范坐标框架转换,即通过转换来控制结构(例如面部的形状)的对应图图(例如,面部的形状)。因此,找到对应关系归结为在不同的对应图中定位相同的坐标。在Coordgan,我们采样了一个转换以表示合成实例的结构,而独立的纹理分支负责渲染与结构正交的外观细节。我们的方法还可以通过在发电机顶部添加编码器来提取真实图像的密集对应图。我们通过在多个数据集上的分割掩码传输来定量地证明了学到的密集对应关系的质量。我们还表明,与现有方法相比,所提出的发电机可以实现更好的结构和纹理分离。项目页面:https://jitengmu.github.io/coordgan/
Recent advances show that Generative Adversarial Networks (GANs) can synthesize images with smooth variations along semantically meaningful latent directions, such as pose, expression, layout, etc. While this indicates that GANs implicitly learn pixel-level correspondences across images, few studies explored how to extract them explicitly. In this work, we introduce Coordinate GAN (CoordGAN), a structure-texture disentangled GAN that learns a dense correspondence map for each generated image. We represent the correspondence maps of different images as warped coordinate frames transformed from a canonical coordinate frame, i.e., the correspondence map, which describes the structure (e.g., the shape of a face), is controlled via a transformation. Hence, finding correspondences boils down to locating the same coordinate in different correspondence maps. In CoordGAN, we sample a transformation to represent the structure of a synthesized instance, while an independent texture branch is responsible for rendering appearance details orthogonal to the structure. Our approach can also extract dense correspondence maps for real images by adding an encoder on top of the generator. We quantitatively demonstrate the quality of the learned dense correspondences through segmentation mask transfer on multiple datasets. We also show that the proposed generator achieves better structure and texture disentanglement compared to existing approaches. Project page: https://jitengmu.github.io/CoordGAN/