论文标题
使用时间序列深度学习来增强具有挑战性的屏幕检测事件肺结节的癌症预测
Enhancing Cancer Prediction in Challenging Screen-Detected Incident Lung Nodules Using Time-Series Deep Learning
论文作者
论文摘要
肺癌是全球与癌症相关死亡率的主要原因。事实证明,使用年度低剂量计算机断层扫描(CT)扫描的肺癌筛查(LCS)已被证明可显着降低肺癌死亡率,通过在较早阶段检测癌性肺结核。可以使用机器/深度学习算法来增强肺结节恶性风险的风险分层。但是,大多数现有算法:a)主要评估了单个时间点CT数据,从而未能利用纵向成像数据集中包含的固有优势; b)尚未集成到可能为风险预测的计算机模型相关的临床数据中; c)尚未评估对放射科医生解释最具挑战性的结节频谱的算法性能,而分析工具的援助将是最有益的。 在这里,我们显示了我们的时间序列深度学习模型(DEEPCAD-NLM-L)的性能,该模型在三个纵向数据域中集成了多模型信息:结节特异性,肺部特异性和临床人群数据。我们将我们的时间序列深度学习模型与A)来自国家肺筛查试验中CTS的放射科医生表现,并具有最具挑战性的诊断结节; b)来自北伦敦LCS研究(峰会)的结节管理算法。我们的模型在解释具有挑战性的肺结节时表现出与放射科医生相当和互补的性能,并且与仅利用单个时间点数据的模型相比,表现出改善的性能(AUC = 88 \%)。结果强调了时间序列的重要性,在解释LCS中的恶性风险时多模式分析。
Lung cancer is the leading cause of cancer-related mortality worldwide. Lung cancer screening (LCS) using annual low-dose computed tomography (CT) scanning has been proven to significantly reduce lung cancer mortality by detecting cancerous lung nodules at an earlier stage. Improving risk stratification of malignancy risk in lung nodules can be enhanced using machine/deep learning algorithms. However most existing algorithms: a) have primarily assessed single time-point CT data alone thereby failing to utilize the inherent advantages contained within longitudinal imaging datasets; b) have not integrated into computer models pertinent clinical data that might inform risk prediction; c) have not assessed algorithm performance on the spectrum of nodules that are most challenging for radiologists to interpret and where assistance from analytic tools would be most beneficial. Here we show the performance of our time-series deep learning model (DeepCAD-NLM-L) which integrates multi-model information across three longitudinal data domains: nodule-specific, lung-specific, and clinical demographic data. We compared our time-series deep learning model to a) radiologist performance on CTs from the National Lung Screening Trial enriched with the most challenging nodules for diagnosis; b) a nodule management algorithm from a North London LCS study (SUMMIT). Our model demonstrated comparable and complementary performance to radiologists when interpreting challenging lung nodules and showed improved performance (AUC=88\%) against models utilizing single time-point data only. The results emphasise the importance of time-series, multi-modal analysis when interpreting malignancy risk in LCS.