论文标题

模型预测优化的路径积分策略

Model Predictive Optimized Path Integral Strategies

论文作者

Asmar, Dylan M., Senanayake, Ransalu, Manuel, Shawn, Kochenderfer, Mykel J.

论文摘要

我们概括了模型预测路径积分控制(MPPI)的推导,以允许对照序列中的对照组进行单个关节分布。这种改革允许实施自适应重要性采样(AIS)算法,以在最初的重要性采样步骤中实施,同时仍保持MPPI的好处,例如使用任意系统的动态和成本功能。在模拟环境中证明了通过在每个控制步骤中集成AIS来优化建议分布的好处,包括控制轨道周围的多辆车。新算法比MPPI更有效地样品,可以通过更少的样本实现更好的性能。随着动作空间的维度的增加,这种性能差异会增长。模拟的结果表明,新算法可以用作任何时间算法,从而增加了每次迭代的控制值与依赖大量样品的算法。

We generalize the derivation of model predictive path integral control (MPPI) to allow for a single joint distribution across controls in the control sequence. This reformation allows for the implementation of adaptive importance sampling (AIS) algorithms into the original importance sampling step while still maintaining the benefits of MPPI such as working with arbitrary system dynamics and cost functions. The benefit of optimizing the proposal distribution by integrating AIS at each control step is demonstrated in simulated environments including controlling multiple cars around a track. The new algorithm is more sample efficient than MPPI, achieving better performance with fewer samples. This performance disparity grows as the dimension of the action space increases. Results from simulations suggest the new algorithm can be used as an anytime algorithm, increasing the value of control at each iteration versus relying on a large set of samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源