论文标题
遗传器安德森局部系统中量子回旋镖效应的无处不在
Ubiquity of the quantum boomerang effect in Hermitian Anderson-localized systems
论文作者
论文摘要
具有无序电位的有限初始速度的粒子会恢复原状,并在原始位置平均停止。最近在模拟量子踢旋转模型[Phys。修订版X 12,011035(2022)]。我们提供了支持QBE的分析性论点,这些论点在各种无序系统中。观察真实空间QBE效应的足够条件是(a)安德森本地化,(b)在非富甲系统的情况下,频谱的现实,(c)$ \ {h \} $在$ \ \ {h \} $中是不变性的,在$ \ m natecal {r \ \ \,t} $的应用下是$ diartial of Pirinity of(d) t} $,其中$ \ Mathcal {r} $是反射$ x \ rightArrow -x $和$ \ Mathcal {t} $是Time -Revers -verse -verse ocerator。如果条件(c)和(d)相对于运算符$ \ Mathcal {t} $而不是$ \ Mathcal {rt} $,则可以在具有动态定位的系统中的动量空间中观察到QBE。这些条件允许在时间反向对称性损坏的模型中观察QBE,这与先前对效应的分析以及在大型的非炎性模型中所期望的相反。我们提供了具有磁通量破坏时间反向对称性以及带有电场的磁通量的晶格模型中的QBE示例。尽管QBE直接适用于非相互作用的多体系统,但我们认为,由于$ RT $($ t $)对称性的破坏,在弱相互作用的骨气系统中不存在真正的空间(动量空间)QBE。
A particle with finite initial velocity in a disordered potential comes back and in average stops at the original location. This phenomenon dubbed 'quantum boomerang effect' (QBE) has been recently observed in an experiment simulating the quantum kicked-rotor model [Phys. Rev. X 12, 011035 (2022)]. We provide analytical arguments that support QBE in a wide class of disordered systems. Sufficient conditions to observe the real-space QBE effect are (a) Anderson localization, (b) the reality of the spectrum for the case of non-Hermitian systems, (c) the ensemble of disorder realizations $\{H\}$ be invariant under the application of $\mathcal{R\, T}$, and (d) the initial state is an eigenvector of $\mathcal{R\, T}$, where $\mathcal{R}$ is a reflection $x \rightarrow -x$ and $\mathcal{T}$ is the time-reversal operator. The QBE can be observed in momentum-space in systems with dynamical localization if conditions (c) and (d) are satisfied with respect to the operator $\mathcal{T}$ instead of $\mathcal{RT}$. These conditions allow the observation of the QBE in time-reversal symmetry broken models, contrarily to what was expected from previous analyses of the effect, and in a large class of non-Hermitian models. We provide examples of QBE in lattice models with magnetic flux breaking time-reversal symmetry and in a model with electric field. Whereas the QBE straightforwardly applies to noninteracting many-body systems, we argue that a real-space (momentum-space) QBE is absent in weakly interacting bosonic systems due to the breaking of $RT$ ($T$) symmetry.