论文标题

关于Denjoy-Wolff点的收敛

On the convergence of Denjoy-Wolff points

论文作者

Belinschi, Serban, Bercovici, Hari, Ho, Ching Wei

论文摘要

如果$φ$是单位磁盘$ \ mathbb {d} $的分析函数,而$φ$并不是保形的自动形态,那么我们用$λ_φ$表示denjoy-wolff点,即iTerates $φ(φ(φ(xotsvotsvotnvomv))的极限。 Heins的结果表明,给定序列$(φ_{n})_ {n \ in \ Mathbb {n}} $的这种分析函数,这些函数将其汇聚到$φ$,它遵循$ \ lim_ {n \ to \ lim_ {n \ to \ infty}}λ_ /λ_{φ_{φ_{φ这使我们能够改善自由卷积研究中产生的从属函数的串联扩展的结果。我们还提供了Heins结果的替代证明。

If $φ$ is an analytic function from the unit disk $\mathbb{D}$ to itself, and $φ$ is not a conformal automorphism, we denote by $λ_φ$ its Denjoy-Wolff point, that is, the limit of the iterates $φ(φ(\cdotsφ(0)\cdots))$. A result of Heins shows that, given a sequence $(φ_{n})_{n\in\mathbb{N}}$ of such analytic functions that convergence pointwise to $φ$, it follows that $\lim_{n\to\infty}λ_{φ_{n}}=λ_φ$. This allows us to improve results about the contnuous extensions of the subordination functions that arise in the study of free convolutions. We also offer an alternate proof of the result of Heins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源