论文标题
$ g $ circles bouquet嵌入的球体的最小尺寸为$ 2G-1 $
The minimal dimension of a sphere with an equivariant embedding of the bouquet of $g$ circles is $2g-1$
论文作者
论文摘要
要嵌入$ g $ circles $ b_g $的花束中$ n $ -sphere $ s^n $,以便其完整的对称组动作扩展到$ s^n $的正交操作,最小$ n $是$ 2G-1 $。这回答了B. Zimmermann提出的一个问题。
To embed the bouquet of $g$ circles $B_g$ into the $n$-sphere $S^n$ so that its full symmetry group action extends to an orthogonal actions on $S^n$, the minimal $n$ is $2g-1$. This answers a question raised by B. Zimmermann.