论文标题
1D无序手性钟模型的归功于通用的过渡
Commensurate-Incommensurate Transitions of the 1D Disordered Chiral Clock Model
论文作者
论文摘要
我们研究了淬火障碍对1d $ \ mathbb {z} _n $手性时钟模型的相应量过敏过渡的影响。域壁和稀有区域的相互作用使纯模型的急剧转变圆润。域壁的密度显示出基本的奇异性,而顺序参数在过渡时会出现不连续性。我们执行广泛的密度 - 矩阵重新归一化组计算以支持理论预测。我们的结果提供了无序系统中连续相变的独特舍入机制。
We study the effects of quenched disorder on the commensurate-incommensurate transitions in the 1D $\mathbb{Z}_N$ chiral clock model. The interplay of domain walls and rare regions rounds the sharp transitions of the pure model. The density of domain walls displays an essential singularity, while the order parameter develops a discontinuity at the transition. We perform extensive density-matrix renormalization group calculations to support theoretical predictions. Our results provide a distinct rounding mechanism of continuous phase transitions in disordered systems.