论文标题

多粒性对准域适应对象检测

Multi-Granularity Alignment Domain Adaptation for Object Detection

论文作者

Zhou, Wenzhang, Du, Dawei, Zhang, Libo, Luo, Tiejian, Wu, Yanjun

论文摘要

域自适应对象检测由于源域和目标域之间的独特数据分布而具有挑战性。在本文中,我们提出了一个统一的基于多粒度对准的对象检测框架,用于域,不变特征学习。为此,我们跨不同的粒度观点编码依赖项,包括像素,实例和类别级别,以同时对齐两个域。基于骨干网络的像素级特征图,我们首先开发了Omni尺度的封闭式融合模块,以通过比例吸引的卷积来汇总实例的判别表示,从而导致可靠的多尺度对象检测。同时,提出了多粒性歧视因子来确定样品的不同粒度(即像素,实例和类别)来自哪些领域。值得注意的是,我们不仅利用了不同类别中的实例可区分性,还利用了两个域之间的类别一致性。在多个域的适应场景上进行了广泛的实验,这证明了我们框架对无锚固FCO的最先进算法的有效性,并且基于锚的基于锚的速度更快的RCNN检测器具有不同的骨干。

Domain adaptive object detection is challenging due to distinctive data distribution between source domain and target domain. In this paper, we propose a unified multi-granularity alignment based object detection framework towards domain-invariant feature learning. To this end, we encode the dependencies across different granularity perspectives including pixel-, instance-, and category-levels simultaneously to align two domains. Based on pixel-level feature maps from the backbone network, we first develop the omni-scale gated fusion module to aggregate discriminative representations of instances by scale-aware convolutions, leading to robust multi-scale object detection. Meanwhile, the multi-granularity discriminators are proposed to identify which domain different granularities of samples(i.e., pixels, instances, and categories) come from. Notably, we leverage not only the instance discriminability in different categories but also the category consistency between two domains. Extensive experiments are carried out on multiple domain adaptation scenarios, demonstrating the effectiveness of our framework over state-of-the-art algorithms on top of anchor-free FCOS and anchor-based Faster RCNN detectors with different backbones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源