论文标题

完全非阳性的 - 偏置真正纠缠的子空间

Fully non-positive-partial-transpose genuinely entangled subspaces

论文作者

Makuta, Owidiusz, Kuzaka, Błażej, Augusiak, Remigiusz

论文摘要

真正纠缠的子空间是多方希尔伯特空间中仅由真正纠缠的状态组成的一类子空间。因此,它们是在多部分纠缠的背景下研究的有趣对象。在这里,我们提供了多部分子空间的结构,这些子空间不仅是真正纠缠的,而且是完全非阳性的 - 透明(NPT)的意义,即对它们的任何混合状态都具有任何两人的非阳性部分转置。我们的构建起源于以量子误差校正而闻名的稳定形式。为此,我们首先引入了一些标准,允许评估给定非平凡稳定器子空间中的任何状态是否确实是多方纠缠的。然后,我们使用这些标准来为任何数量的各方和任意的局部维度构建真正纠缠的稳定剂子空间,并猜测它们在稳定剂形式主义中可以达到最大维度。同时,我们证明,每个真正纠缠的子空间在上述意义上都是无数核的,这意味着一个非常令人惊讶的事实是,没有真正纠缠的稳定器子空间可以支持PPT纠缠的状态。

Genuinely entangled subspaces are a class of subspaces in the multipartite Hilbert spaces that are composed of only genuinely entangled states. They are thus an interesting object of study in the context of multipartite entanglement. Here we provide a construction of multipartite subspaces that are not only genuinely entangled but also fully non-positive-partial-transpose (NPT) in the sense that any mixed state supported on them has non-positive partial transpose across any bipartition. Our construction originates from the stabilizer formalism known for its use in quantum error correction. To this end, we first introduce a couple of criteria allowing to assess whether any state from a given non-trivial stabilizer subspace is genuinely multipartite entangled. We then use these criteria to construct genuinely entangled stabilizer subspaces for any number of parties and arbitrary local dimension and conjecture them to be of maximal dimension achievable within the stabilizer formalism. At the same time, we prove that every genuinely entangled subspace is fully NPT in the above sense, which implies a quite surprising fact that no genuinely entangled stabilizer subspace can support PPT entangled states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源