论文标题

基于Stein的弱构造4D-VAR的预处理

Stein-based preconditioners for weak-constraint 4D-var

论文作者

Palitta, Davide, Tabeart, Jemima M.

论文摘要

数据同化的算法尝试通过结合观测和先验模型的信息来预测动态系统的最可能状态。变异方法,例如在此问题中考虑的弱构成四维变分数据同化公式,最终可以解释为最小化问题。这种公式的主要挑战之一是在被采用的非线性求解器的内部线性步骤中产生的大型方程式的解决方案。根据所采用的方法,这些线性代数问题等于鞍点线性系统或对称正定确定(SPD)。可以通过Krylov方法(例如GMRES或CG)来解决这两种配方,该方法需要预先进行预处理,以确保根据迭代次数的快速收敛。在本文中,我们说明了涉及某些Stein矩阵方程的解决方案的新颖,有效的预处理运算符。除了实现更好的计算性能外,后一种机器还使我们能够为某些问题设置的预处理线性系统的特征值分布得出更严格的界限。与当前的最新方法相比,一系列不同的数值结果显示了所提出的方法的有效性。

Algorithms for data assimilation try to predict the most likely state of a dynamical system by combining information from observations and prior models. Variational approaches, such as the weak-constraint four-dimensional variational data assimilation formulation considered in this problem, can ultimately be interpreted as a minimization problem. One of the main challenges of such a formulation is the solution of large linear systems of equations which arise within the inner linear step of the adopted nonlinear solver. Depending on the adopted approach, these linear algebraic problems amount to either a saddle point linear system or a symmetric positive definite (SPD) one. Both formulations can be solved by means of a Krylov method, like GMRES or CG, that needs to be preconditioned to ensure fast convergence in terms of the number of iterations. In this paper we illustrate novel, efficient preconditioning operators which involve the solution of certain Stein matrix equations. In addition to achieving better computational performance, the latter machinery allows us to derive tighter bounds for the eigenvalue distribution of the preconditioned linear system for certain problem settings. A panel of diverse numerical results displays the effectiveness of the proposed methodology compared to current state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源