论文标题
MOF:一个模块化框架,用于快速将优化方法应用于通用工程设计问题
MOF: A Modular Framework for Rapid Application of Optimization Methodologies to General Engineering Design Problems
论文作者
论文摘要
已经开发了多种优化算法来解决工程设计问题,其中解决方案空间太大而无法手动确定最佳解决方案。开发了模块化优化框架(MOF),以促进这些优化算法的开发和应用。 MOF用Python 3编写,它使用面向对象的编程来创建模块化设计,该设计使用户可以轻松地将新的优化算法,方法或工程设计问题纳入框架中。此外,通用输入文件允许用户轻松指定设计问题,更新优化参数并在各种优化方法和算法之间进行比较。在当前的MOF版本中,实施了遗传算法(GA)和模拟退火方法。包括不同核工程优化问题的应用程序作为示例。通过不受限制的核燃料组件晶格优化,第一个循环燃料加载约束了三环加压水反应器(PWR)的第一个循环燃料载荷的优化,以及第三个循环约束四环PWR的优化,可以证明MOF内GA和SA优化算法的有效性。在所有情况下,算法都有效地搜索了解决方案空间,并发现了满足施加约束的给定问题的优化解决方案。这些结果证明了MOF中现有优化工具的功能,它们还提供了一组基准案例,可用于评估MOF的未来优化方法的进度。
A variety of optimization algorithms have been developed to solve engineering design problems in which the solution space is too large to manually determine the optimal solution. The Modular Optimization Framework (MOF) was developed to facilitate the development and application of these optimization algorithms. MOF is written in Python 3, and it used object-oriented programming to create a modular design that allows users to easily incorporate new optimization algorithms, methods, or engineering design problems into the framework. Additionally, a common input file allows users to easily specify design problems, update the optimization parameters, and perform comparisons between various optimization methods and algorithms. In the current MOF version, genetic algorithm (GA) and simulated annealing (SA) approaches are implemented. Applications in different nuclear engineering optimization problems are included as examples. The effectiveness of the GA and SA optimization algorithms within MOF are demonstrated through an unconstrained nuclear fuel assembly pin lattice optimization, a first cycle fuel loading constrained optimization of a three-loop pressurized water reactor (PWR), and a third cycle constrained optimization of a four-loop PWR. In all cases, the algorithms efficiently searched the solution spaces and found optimized solutions to the given problems that satisfied the imposed constraints. These results demonstrate the capabilities of the existing optimization tools within MOF, and they also provide a set of benchmark cases that can be used to evaluate the progress of future optimization methodologies with MOF.