论文标题

探索或不探索:基于后悔的LTL计划在部分已知的环境中

To Explore or Not to Explore: Regret-Based LTL Planning in Partially-Known Environments

论文作者

Zhao, Jianing, Zhu, Keyi, Feng, Mingyang, Yin, Xiang

论文摘要

在本文中,我们研究了由共同安全的线性时间逻辑(LTL)公式描述的高级规格的最佳机器人路径计划问题。我们考虑工作空间的地图几何形状部分为人所知的方案。具体而言,我们假设有一些未知的区域,除非机器人在物理上到达这些区域,否则机器人不知道其继任区域。与优化最糟糕的成本的标准基于游戏的方法相反,在本文中,我们建议将遗憾用作在这种部分知名环境中计划的新指标。在固定但未知的环境下计划的遗憾是机器人在事后意识到实际环境时可能实现的实际成本与最佳响应成本之间的差异。我们提供了一种有效的算法,以找到满足LTL规范的最佳计划,同时最大程度地减少其遗憾。提供了有关消防机器人的案例研究,以说明拟议的框架。我们认为,新指标更适合部分知名环境的情况,因为它捕获了实际花费的实际成本与探索未知区域可能获得的潜在收益之间的权衡。

In this paper, we investigate the optimal robot path planning problem for high-level specifications described by co-safe linear temporal logic (LTL) formulae. We consider the scenario where the map geometry of the workspace is partially-known. Specifically, we assume that there are some unknown regions, for which the robot does not know their successor regions a priori unless it reaches these regions physically. In contrast to the standard game-based approach that optimizes the worst-case cost, in the paper, we propose to use regret as a new metric for planning in such a partially-known environment. The regret of a plan under a fixed but unknown environment is the difference between the actual cost incurred and the best-response cost the robot could have achieved if it realizes the actual environment with hindsight. We provide an effective algorithm for finding an optimal plan that satisfies the LTL specification while minimizing its regret. A case study on firefighting robots is provided to illustrate the proposed framework. We argue that the new metric is more suitable for the scenario of partially-known environment since it captures the trade-off between the actual cost spent and the potential benefit one may obtain for exploring an unknown region.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源