论文标题
分散的马尔可夫决策过程中的实际因果关系和责任归因
Actual Causality and Responsibility Attribution in Decentralized Partially Observable Markov Decision Processes
论文作者
论文摘要
实际因果关系和责任归因的密切相关概念对于负责任的决策至关重要。实际因果关系的重点是特定结果,并旨在确定对实现兴趣结果至关重要的决策(行动)。责任归因是互补的,旨在确定决策者(代理人)对此结果负责的程度。在本文中,我们研究了在不确定性下用于多代理顺序决策的广泛使用框架下的这些概念:分散的部分可观察到的马尔可夫决策过程(DEC-POMDPS)。在RL中显示了POMDP和结构因果模型(SCM)之间的对应关系之后,我们首先在DEC-POMDPS和SCMS之间建立了联系。此连接使我们能够利用一种语言来描述先前工作中的实际因果关系,并研究DECOMDPS中实际因果关系的现有定义。鉴于某些众所周知的定义可能导致违反直觉的实际原因,我们介绍了一个新颖的定义,该定义更明确地说明了代理人行为之间的因果关系。然后,我们根据实际因果关系转向责任归因,我们认为,在将责任归因于代理商时,重要的是要考虑代理人参与的实际原因的数量以及操纵其自身责任程度的能力。在这些论点中,我们介绍了一种责任归因方法,该方法扩展了先前的工作,同时考虑到上述考虑因素。最后,通过基于模拟的实验,我们比较了实际因果关系和责任归因方法的不同定义。经验结果表明,实际因果关系的定义与其对归因责任的影响之间的定性差异。
Actual causality and a closely related concept of responsibility attribution are central to accountable decision making. Actual causality focuses on specific outcomes and aims to identify decisions (actions) that were critical in realizing an outcome of interest. Responsibility attribution is complementary and aims to identify the extent to which decision makers (agents) are responsible for this outcome. In this paper, we study these concepts under a widely used framework for multi-agent sequential decision making under uncertainty: decentralized partially observable Markov decision processes (Dec-POMDPs). Following recent works in RL that show correspondence between POMDPs and Structural Causal Models (SCMs), we first establish a connection between Dec-POMDPs and SCMs. This connection enables us to utilize a language for describing actual causality from prior work and study existing definitions of actual causality in Dec-POMDPs. Given that some of the well-known definitions may lead to counter-intuitive actual causes, we introduce a novel definition that more explicitly accounts for causal dependencies between agents' actions. We then turn to responsibility attribution based on actual causality, where we argue that in ascribing responsibility to an agent it is important to consider both the number of actual causes in which the agent participates, as well as its ability to manipulate its own degree of responsibility. Motivated by these arguments we introduce a family of responsibility attribution methods that extends prior work, while accounting for the aforementioned considerations. Finally, through a simulation-based experiment, we compare different definitions of actual causality and responsibility attribution methods. The empirical results demonstrate the qualitative difference between the considered definitions of actual causality and their impact on attributed responsibility.