论文标题
面部动作单位识别的弱监督区域和时间学习
Weakly Supervised Regional and Temporal Learning for Facial Action Unit Recognition
论文作者
论文摘要
自动面部动作单元(AU)识别是一项艰巨的任务,因为手动注释缺乏。为了减轻这个问题,已经大量的努力致力于利用各种弱监督的方法,这些方法利用了许多未标记的数据。但是,关于AUS的某些独特特性(例如区域和关系特征)的许多方面在以前的工作中没有充分探索。在此激励的情况下,我们考虑了AU属性,并提出了两个相关的辅助AU任务,以通过未标记的数据以自我监督的方式以有限的注释和模型性能之间的差距弥合差距。具体而言,为了通过AU关系嵌入增强区域特征的歧视,我们设计了一项ROI介入的任务,以恢复随机裁剪的AU贴片。同时,提出了一个基于基于图像的光流估计任务,以利用面部肌肉的动态变化并将运动信息编码为全局特征表示。基于这两个自制的辅助任务,在骨干网络中更好地捕获了AUS的本地特征,相互关系和运动提示。此外,通过合并半监督的学习,我们提出了一个可端到端的可训练框架,称为弱监督的区域和时间学习(WSRTL),以识别。关于BP4D和DISFA的广泛实验证明了我们方法的优势和新的最先进的表演。
Automatic facial action unit (AU) recognition is a challenging task due to the scarcity of manual annotations. To alleviate this problem, a large amount of efforts has been dedicated to exploiting various weakly supervised methods which leverage numerous unlabeled data. However, many aspects with regard to some unique properties of AUs, such as the regional and relational characteristics, are not sufficiently explored in previous works. Motivated by this, we take the AU properties into consideration and propose two auxiliary AU related tasks to bridge the gap between limited annotations and the model performance in a self-supervised manner via the unlabeled data. Specifically, to enhance the discrimination of regional features with AU relation embedding, we design a task of RoI inpainting to recover the randomly cropped AU patches. Meanwhile, a single image based optical flow estimation task is proposed to leverage the dynamic change of facial muscles and encode the motion information into the global feature representation. Based on these two self-supervised auxiliary tasks, local features, mutual relation and motion cues of AUs are better captured in the backbone network. Furthermore, by incorporating semi-supervised learning, we propose an end-to-end trainable framework named weakly supervised regional and temporal learning (WSRTL) for AU recognition. Extensive experiments on BP4D and DISFA demonstrate the superiority of our method and new state-of-the-art performances are achieved.