论文标题
使用X射线微晶光仪的高分辨率康普顿光谱法
High-resolution Compton spectroscopy using X-ray microcalorimeters
论文作者
论文摘要
X射线康普顿光谱是在环境和操作环境中散装材料的电子动量分布的少数直接探针之一。我们报告了使用X射线微量瓦利计探测器在基于存储环的高能X射线光源设施上进行的高分辨率非弹性X射线散射实验。测量了与锂离子电池研究相关的锂和氧化钴粉。测得的康普顿剖面的光谱分析显示出对低Z元素和氧化态的高度敏感性。与计算的Hartree-fock曲线相比,测得的康普顿曲线的线形分析受到能量解决的半导体检测器的分辨率的限制。我们已经表征了X射线过渡 - 边缘传感器微氧化电表检测器,用于使用高分辨率磁铁源在高级光子源(APS)处,其具有双晶体单色器,可提供单色光子光子源,从而提供单色光子的光子能量附近27.5 KeV。测量低于0.16原子单元的动量分辨率在相同散射几何形状的最先进的硅漂移检测器上的提高超过7倍以上。此外,与使用硅漂移探测器时观察到的X射线微氧计探测器相比,使用X射线微量含量检测器清楚地解决了狭窄价和密封锂金属的宽核电子轮廓的线形。使用此处显示的高分辨率康普顿散射为众多材料的电子动量分布提供了新的机会,这些机会范围从电化学到凝结物理学。
X-ray Compton spectroscopy is one of the few direct probes of the electron momentum distribution of bulk materials in ambient and operando environments. We report high-resolution inelastic X-ray scattering experiments with high momentum and energy transfer performed at a storage-ring-based high-energy X-ray light source facility using an X-ray microcalorimeter detector. Compton profiles were measured for lithium and cobalt oxide powders relevant to lithium-ion battery research. Spectroscopic analysis of the measured Compton profiles shows high-sensitivity to the low-Z elements and oxidation states. The lineshape analysis of the measured Compton profiles in comparison with computed Hartree-Fock profiles is limited by the resolution of the energy-resolving semiconductor detector. We have characterized an X-ray transition-edge sensor microcalorimeter detector for high-resolution Compton scattering experiments using a bending magnet source at the Advanced Photon Source (APS) with a double crystal monochromator providing monochromatic photon energies near 27.5 keV. The momentum resolution below 0.16 atomic units was measured yielding an improvement of more than a factor of 7 over a state-of-the-art silicon drift detector for the same scattering geometry. Furthermore, the lineshapes of narrow valence and broad core electron profiles of sealed lithium metal were clearly resolved using an X-ray microcalorimeter detector compared to smeared and broadened lineshapes observed when using a silicon drift detector. High-resolution Compton scattering using the energy-resolving detector shown here presents new opportunities for spatial imaging of electron momentum distributions for a wide class of materials with applications ranging from electrochemistry to condensed matter physics.