论文标题
复杂介质中高维量子光电电路的逆设计
Inverse-design of high-dimensional quantum optical circuits in a complex medium
论文作者
论文摘要
可编程光电电路构成了当今量子技术的关键部分,从量子通信的收发器到量子信息处理的集成光子芯片。随着此类电路的大小增加,保持对每个组件的精确控制变得具有挑战性,从而降低了执行操作的质量。同时,在此制度中,电路制造中的少量缺陷被放大,从而极大地抑制了其性能。在这里,我们展示了使用反设计技术将光电路嵌入大型环境模式混合仪的高维空间中,使我们能够放弃对每个单个电路元件的控制,同时在电路上保留高度的可编程性。使用这种方法,我们在复杂的散射介质中实现了高维线性光电电路,该复杂散射介质由位于两个可控相平面之间的商业多模式光纤组成。我们采用这些电路来操纵多达七个维度的高维空间模式纠缠,以表明它们作为完全可编程的量子门的应用。此外,我们展示了它们的可编程性如何使我们能够将多模式纤维本身转变为广义的多结果测量设备,从而使我们能够在传输渠道内运输和证明纠缠。最后,我们讨论了方法的可伸缩性,从数值上显示如何通过利用高维模式混合器的资源来通过低电路深度实现高电路保真度。我们的工作是一种实现对高维量子状态的精确控制的替代性但有力的方法,并在下一代量子通信和计算技术中清晰地应用。
Programmable optical circuits form a key part of quantum technologies today, ranging from transceivers for quantum communication to integrated photonic chips for quantum information processing. As the size of such circuits is increased, maintaining precise control over every individual component becomes challenging, leading to a reduction in the quality of the operations performed. In parallel, minor imperfections in circuit fabrication are amplified in this regime, dramatically inhibiting their performance. Here we show how embedding an optical circuit in the higher-dimensional space of a large, ambient mode-mixer using inverse-design techniques allows us to forgo control over each individual circuit element, while retaining a high degree of programmability over the circuit. Using this approach, we implement high-dimensional linear optical circuits within a complex scattering medium consisting of a commercial multi-mode fibre placed between two controllable phase planes. We employ these circuits to manipulate high-dimensional spatial-mode entanglement in up to seven dimensions, demonstrating their application as fully programmable quantum gates. Furthermore, we show how their programmability allows us to turn the multi-mode fibre itself into a generalised multi-outcome measurement device, allowing us to both transport and certify entanglement within the transmission channel. Finally, we discuss the scalability of our approach, numerically showing how a high circuit fidelity can be achieved with a low circuit depth by harnessing the resource of a high-dimensional mode-mixer. Our work serves as an alternative yet powerful approach for realising precise control over high-dimensional quantum states of light, with clear applications in next-generation quantum communication and computing technologies.